Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (20)

Advertisement

Research Article Free access | 10.1172/JCI110539

Neutropenia induced by systemic infusion of 5,12-dihydroxy-6,8,10,14-eicosatetraenoic acid: correlation with its in vitro effects upon neutrophils.

J T O'Flaherty, M J Thomas, S L Cousart, W L Salzer, and C E McCall

Find articles by O'Flaherty, J. in: JCI | PubMed | Google Scholar

Find articles by Thomas, M. in: JCI | PubMed | Google Scholar

Find articles by Cousart, S. in: JCI | PubMed | Google Scholar

Find articles by Salzer, W. in: JCI | PubMed | Google Scholar

Find articles by McCall, C. in: JCI | PubMed | Google Scholar

Published April 1, 1982 - More info

Published in Volume 69, Issue 4 on April 1, 1982
J Clin Invest. 1982;69(4):993–998. https://doi.org/10.1172/JCI110539.
© 1982 The American Society for Clinical Investigation
Published April 1, 1982 - Version history
View PDF
Abstract

5(S), 12(S)-Dihydroxy-cis-14,trans-6,8,10-eicosatetraenoate (compound I), 5(S),12(R)-dihydroxy-cis-14,trans-6,8,10-eicosatetraenoate (compound II), and 5(S),12(R)-dihydroxy-cis-6,14,trans-8,10-eicosatetraenoate (compound III) were prepared from rabbit peritoneal neutrophils challenged with arachidonic acid plus ionophore A23187. Each arachidonate metabolite caused rabbit neutrophils to aggregate and, in cells treated with cytochalasin B, release granule-bound enzymes. Compound III was 10- to 100-fold more potent than compounds II and I. When intravenously infused into rabbits at doses of 100--1,000 ng/kg, compound III induced abrupt, profound, transient neutropenia associated with a rapidly reversing accumulation of neutrophils in the pulmonary circulation. This in vivo action correlated closely with the ability of the fatty acid to activate neutrophils in vitro: neutropenia, aggregation, and degranulation occurred at similar doses of stimulus and the rapid, reversing kinetics of the neutropenic response paralleled the equally rapid, reversing formation of aggregates. The fatty acid did not alter the circulating levels of lymphocytes or platelets and did not aggregate platelets in vitro. At comparable doses (i.e., 100--1,000 ng/kg), compounds I and II did not cause neutropenia. Thus, compound III possesses a high degree of structural and target-cell specificity in stimulating neutrophils in vitro and in vivo. Clinical and experimental syndromes associating neutropenia with increased levels of circulating arachidonate metabolites may involve compound III as a mediator of neutrophil sequestration in lung.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 993
page 993
icon of scanned page 994
page 994
icon of scanned page 995
page 995
icon of scanned page 996
page 996
icon of scanned page 997
page 997
icon of scanned page 998
page 998
Version history
  • Version 1 (April 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (20)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts