Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 14

See more details

Posted by 23 X users
153 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI110517

Muscle Glucose Metabolism following Exercise in the Rat: INCREASED SENSITIVITY TO INSULIN

Erik A. Richter, Lawrence P. Garetto, Michael N. Goodman, and Neil B. Ruderman

Evans Memorial Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118

Division of Diabetes and Metabolism, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medical Physiology B, Panum Institute, University of Copenhagen, Denmark

Find articles by Richter, E. in: JCI | PubMed | Google Scholar

Evans Memorial Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118

Division of Diabetes and Metabolism, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medical Physiology B, Panum Institute, University of Copenhagen, Denmark

Find articles by Garetto, L. in: JCI | PubMed | Google Scholar

Evans Memorial Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118

Division of Diabetes and Metabolism, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medical Physiology B, Panum Institute, University of Copenhagen, Denmark

Find articles by Goodman, M. in: JCI | PubMed | Google Scholar

Evans Memorial Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118

Division of Diabetes and Metabolism, Boston University Medical Center, Boston, Massachusetts 02118

Department of Medical Physiology B, Panum Institute, University of Copenhagen, Denmark

Find articles by Ruderman, N. in: JCI | PubMed | Google Scholar

Published April 1, 1982 - More info

Published in Volume 69, Issue 4 on April 1, 1982
J Clin Invest. 1982;69(4):785–793. https://doi.org/10.1172/JCI110517.
© 1982 The American Society for Clinical Investigation
Published April 1, 1982 - Version history
View PDF
Abstract

Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during perfusion of their isolated hindquarters. Glucose utilization by the hindquarter was the same in exercised and control rats perfused in the absence of added insulin; however, when insulin (30-40,000 μU/ml) was added to the perfusate, glucose utilization was greater after exercise. Prior exercise lowered both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 μU/ml; control, 480 μU/ml) and modestly increased its maximum effect. The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell.

Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was unaltered; however its ability to stimulate the incorporation of [14C]glucose into glycogen in certain muscles was enhanced. Thus at a concentration of 75 μU/ml insulin stimulated glycogen synthesis eightfold more in the fast-twitch red fibers of the red gastrocnemius than it did in the same muscle of nonexercised rats. In contrast, insulin only minimally increased glycogen synthesis in the fast-twitch white fibers of the gastrocnemius, which were not glycogen-depleted. The uptake of 2-deoxyglucose by these muscles followed a similar pattern suggesting that glucose transport was also differentially enhanced. Prior exercise did not enhance the ability of insulin to convert glycogen synthase from its glucose-6-phosphate-dependent (D) to its glucose-6-phosphate-independent (1) form. On the other hand, following exercise, insulin prevented a marked decrease in muscle glucose-6-phosphate, which could have diminished synthase activity in situ. The possibility that exercise enhanced the ability of insulin to convert glycogen synthase D to an intermediate form of the enzyme, more sensitive to glucose-6-phosphate, remains to be explored.

These results suggest that following exercise, glucose transport and glycogen synthesis in skeletal muscle are enhanced due at least in part to an increase in insulin sensitivity. They also suggest that this increase in insulin sensitivity occurs predominantly in muscle fibers that are deglycogenated during exercise.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 785
page 785
icon of scanned page 786
page 786
icon of scanned page 787
page 787
icon of scanned page 788
page 788
icon of scanned page 789
page 789
icon of scanned page 790
page 790
icon of scanned page 791
page 791
icon of scanned page 792
page 792
icon of scanned page 793
page 793
Version history
  • Version 1 (April 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 14
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 23 X users
153 readers on Mendeley
See more details