Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110458

Uridine Diphosphate-Glucuronic Acid-independent Conversion of Bilirubin Monoglucuronides to Diglucuronide in Presence of Plasma Membranes from Rat Liver is Nonenzymic

Andreas Sieg, Gustaaf P. Van Hees, and Karel P. M. Heirwegh

Laboratory of Hepatology, Campus Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium

Find articles by Sieg, A. in: PubMed | Google Scholar

Laboratory of Hepatology, Campus Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium

Find articles by Van Hees, G. in: PubMed | Google Scholar

Laboratory of Hepatology, Campus Gasthuisberg, Catholic University of Leuven, B-3000 Leuven, Belgium

Find articles by Heirwegh, K. in: PubMed | Google Scholar

Published February 1, 1982 - More info

Published in Volume 69, Issue 2 on February 1, 1982
J Clin Invest. 1982;69(2):347–357. https://doi.org/10.1172/JCI110458.
© 1982 The American Society for Clinical Investigation
Published February 1, 1982 - Version history
View PDF
Abstract

Two routes have been proposed for conversion of bilirubin monoglucuronide to the diglucuronide: glucuronyl transfer (a) from UDP-glucuronic acid to bilirubin monoglucuronide, catalyzed by a microsomal UDP-glucuronyltransferase, and (b) from one molecule of bilirubin monoglucuronide to another (transglucuronidation), catalyzed by an enzyme present in liver plasma membranes. The evidence regarding the role of the latter enzyme for in vivo formation of bilirubin diglucuronide is conflicting. We therefore decided to reexamine the transglucuronidation reaction in plasma membranes and to study the conversion of bilirubin monoglucuronide to diglucuronide in vivo. Purified bilirubin monoglucuronide was incubated with homogenates and plasma membrane-enriched fractions from liver of Wistar and Gunn rats. Stoichiometric formation of bilirubin and bilirubin diglucuronide out of 2 mol of bilirubin monoglucuronide was paralleled by an increase of the IIIα- and XIIIα-isomers of the bilirubin aglycone, thus showing that dipyrrole exchange, not transglucuronidation, is the underlying mechanism. Complete inhibition by ascorbic acid probably reflects intermediate formation of free radicals of dipyrrolic moieties. The reaction was nonenzymic because it proceeded independently of the protein concentration and heat denaturation of the plasma membranes did not result in decreased conversion rates. Collectively, these findings show spontaneous, nonenzymic dipyrrole exchange when bilirubin monoglucuronide is incubated in the presence of rat liver plasma membranes. Because bilirubin glucuronides present in biological fluids contain exclusively the bilirubin-IXα aglycone, formation of the diglucuronide from the monoglucuronide by dipyrrole exchange does not occur in vivo. Rapid excretion of unchanged bilirubin monoglucuronide in Gunn rat bile after injection of the pigment provides confirmatory evidence for the absence of a UDP-glucuronic acid-independent process.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 347
page 347
icon of scanned page 348
page 348
icon of scanned page 349
page 349
icon of scanned page 350
page 350
icon of scanned page 351
page 351
icon of scanned page 352
page 352
icon of scanned page 353
page 353
icon of scanned page 354
page 354
icon of scanned page 355
page 355
icon of scanned page 356
page 356
icon of scanned page 357
page 357
Version history
  • Version 1 (February 1, 1982): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts