Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Hemodynamics in diabetic orthostatic hypotension.
J Hilsted, … , J Benn, H Galbo
J Hilsted, … , J Benn, H Galbo
Published December 1, 1981
Citation Information: J Clin Invest. 1981;68(6):1427-1434. https://doi.org/10.1172/JCI110394.
View: Text | PDF
Research Article Article has an altmetric score of 3

Hemodynamics in diabetic orthostatic hypotension.

  • Text
  • PDF
Abstract

Hemodynamic variables (blood pressure, cardiac output, heart rate, plasma volume, splanchnic blood flow, and peripheral subcutaneous blood flow) and plasma concentrations of norepinephrine, epinephrine, and renin were measured in the supine position and after 30 min of quiet standing. This was done in normal subjects (n = 7) and in juvenile-onset diabetic patients without neuropathy (n = 8), with slight neuropathy (decreased beat-to-beat variation in heart rate during hyperventilation) (n = 8), and with severe neuropathy including orthostatic hypotension (n = 7). Blood pressure decreased precipitously in the standing position in the diabetics with orthostatic hypotension, whereas moderate decreases were found in the other three groups. Upon standing, heart rate rose and cardiac output and plasma volume decreased similarly in the four groups. The increases in total peripheral resistance, splanchnic vascular resistance and subcutaneous vascular resistance were all significantly lower (P less than 0.025) in the patients with orthostatic hypotension compared with the other three groups. The increase in plasma norepinephrine concentrations in the patients with orthostatic hypotension was significantly lower (P less than 0.025) than in the patients without neuropathy, whereas plasma renin responses to standing were similar in the four groups. We conclude that in diabetic hypoadrenergic orthostatic hypotension the basic pathophysiological defect is lack of ability to increase vascular resistance, probably due to impaired sympathetic activity in the autonomic nerves innervating resistance vessels; cardiac output and plasma volume responses to standing are similar to those found in normal subjects and in diabetics without neuropathy.

Authors

J Hilsted, H H Parving, N J Christensen, J Benn, H Galbo

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 167 32
PDF 54 20
Scanned page 242 6
Citation downloads 47 0
Totals 510 58
Total Views 568
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 clinical guideline sources
28 readers on Mendeley
See more details