Experiments were performed on anesthetized opossums to study the influence of vagal efferent stimulation on peristalsis in the esophageal smooth muscle using various stimulus parameters. Current intensity, pulse duration, frequency, and train duration were varied systematically. Electrical and mechanical activities were recorded simultaneously at 5, 3, and 1 cm above the lower esophageal sphincter (LES). Vagal efferent stimulation produced a spike burst and contraction with a latency after the termination of the stimulus. This latency varied at different sites with the same stimulus parameters. For example, a stimulus of 5 mA, 0.5 ms, 10 Hz, and 1-s train produced latencies for the electrical response of 1.48 +/- 0.04, 2.2 +/- 0.12, and 3.5 +/- 0.09 s (+/- SEM) at 5, 3, and 1 cm above LES, respectively. The differences in latency were statistically significant (P less than 0.01). The latency of response at any one site also changed with different stimulus parameters; e.g. at 1 cm above LES, the latency of electrical response at 10 Hz was 3.5 +/- 0.09 s, but at 20 Hz the latency was 2.01 +/- 0.06 s when current intensity, pulse, and train duration remained at 5 mA, 0.5 ms, and 1 s. This decrease in latency with increasing frequency was statistically significant (P less than 0.01). By changing stimulus parameters, antiperistalsis or peristalsis with different speeds of propagation could be induced. Antiperistalsis or simultaneous responses occurred near threshold stimulus parameters. Suprathreshold stimuli produced peristaltic responses. Speed of peristalsis in the distal esophagus was 1.82 +/- 0.08 cm/s with swallowing, which was not different from 1.98 +/- 0.14 cm/s (P greater than 0.05) with vagal stimulation of 5 mA, 0.5 ms, 10 Hz, and 1-s train. These studies suggest that: (a) peristalsis in the smooth muscle part of the esophagus can be explained entirely on the basis of peripheral mechanisms, and (b) the central nervous system may modulate the occurrence, polarity, and speed of propagation by modifying the intensity and frequency of vagal activation.
J S Gidda, B W Cobb, R K Goyal
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 188 | 2 |
59 | 8 | |
Scanned page | 383 | 5 |
Citation downloads | 63 | 0 |
Totals | 693 | 15 |
Total Views | 708 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.