Advertisement
Free access | 10.1172/JCI110377
Division of Geographic Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
Find articles by Ravdin, J. in: JCI | PubMed | Google Scholar
Division of Geographic Medicine, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
Division of Infectious Diseases, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
Find articles by Guerrant, R. in: JCI | PubMed | Google Scholar
Published November 1, 1981 - More info
The enteric pathogen, Entamoeba histolytica, appears to cause disease by adhering to and then destroying mucosal barriers. Using an in vitro method of studying the interaction of E. histolytica with target cells (Chinese hamster ovary [CHO] and human erythrocytes [RBC]), we examined the mechanism of amebic adherence and its role in lysis of target cells. Killing and phagocytosis of target cells by amebas ceases at 4°C, allowing observation of adherence. Amebas adhere to CHO cells at 4°C, 78.9% formed rosettes (amebas with ≥3 adherent CHO cells each) at 2 h. At 37°C, cytochalasins B and D inhibit adherence of amebas to CHO cells (P < 0.0005). Amebas adhere to and kill CHO cells in media with <0.1 μM calcium and magnesium plus 10 mM EDTA, indicating that divalent cations are not required in the medium. Adherence of amebas to human RBC was not ABO blood group specific and showed greater adherence to human than bovine or sheep RBC (P < 0.005). Neither Fc nor complement receptors were found on amebas by standard rosette studies. The amebic adherence receptor is not trypsin (0.125%) sensitive nor inhibited by trypan blue (1 mM). N-acetyl-d-galactosamine (GALNAc) inhibited the adherence of amebas to CHO cells and human RBC (0.1 g/100 ml or 4.5 mM GALNAc, P < 0.005) by binding to a receptor on the amebic surface. GALNAc abolishes amebic cytolysis of target CHO cells (determined by 111Indium oxine release from CHO cells, P < 0.001) but not amebic phagocytosis of CHO cells. By suspending ameba-CHO cells rosettes in dextran, we found that GALNAc (1%) reversibly inhibits amebic adherence (P < 0.0005) and that cytochalasins decrease amebic killing of adherent CHO cells (P < 0.025).
These findings indicate that the adherence of E. histolytica to target cells requires microfilament function, is via a specific amebic receptor that has affinity for GALNAc, and is required to lyse cells. Inhibition of the adherence of E. histolytica may alter the pathogenicity of this organism.
Images.