Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI110306

Inhibitory Effect of Epinephrine on Insulin-stimulated Glucose Uptake by Rat Skeletal Muscle

Jean-Louis Chiasson, Hisataka Shikama, David T. W. Chu, and John H. Exton

Laboratories for the Studies of Metabolic Disorders, Howard Hughes Medical Institute, Nashville, Tennessee 37232

Department of Physiology, Vanderbilt University Medical School, Nashville, Tennessee 37232

Find articles by Chiasson, J. in: JCI | PubMed | Google Scholar

Laboratories for the Studies of Metabolic Disorders, Howard Hughes Medical Institute, Nashville, Tennessee 37232

Department of Physiology, Vanderbilt University Medical School, Nashville, Tennessee 37232

Find articles by Shikama, H. in: JCI | PubMed | Google Scholar

Laboratories for the Studies of Metabolic Disorders, Howard Hughes Medical Institute, Nashville, Tennessee 37232

Department of Physiology, Vanderbilt University Medical School, Nashville, Tennessee 37232

Find articles by Chu, D. in: JCI | PubMed | Google Scholar

Laboratories for the Studies of Metabolic Disorders, Howard Hughes Medical Institute, Nashville, Tennessee 37232

Department of Physiology, Vanderbilt University Medical School, Nashville, Tennessee 37232

Find articles by Exton, J. in: JCI | PubMed | Google Scholar

Published September 1, 1981 - More info

Published in Volume 68, Issue 3 on September 1, 1981
J Clin Invest. 1981;68(3):706–713. https://doi.org/10.1172/JCI110306.
© 1981 The American Society for Clinical Investigation
Published September 1, 1981 - Version history
View PDF
Abstract

The effect of epinephrine on basal and insulin-stimulated glucose uptake in perfused hindlimbs of fed rats was studied. Insulin increased glucose uptake in a dose-dependent manner from a basal value of 1.5±0.3 up to a maximum value of 5.3±0.9 μmol/min per 100 g with 6 nM (1 m U/ml). Epinephrine at 10 nM and 0.1 μM also increased glucose uptake to 2.6±0.1 and 3.1±0.1 μmol/min per 100 g, respectively. These same concentrations of epinephrine, however, suppressed the insulin-stimulated glucose uptake to 3.2±0.3 μmol/min per 100 g. Both the stimulatory and inhibitory effects of epinephrine on glucose uptake were completely reversed by propranolol, but were not significantly altered by phentolamine.

Uptake of 3-O-methylglucose and 2-deoxyglucose into thigh muscles of the perfused hindlimbs was stimulated fivefold by insulin, but was unaffected by epinephrine. Epinephrine also did not inhibit the stimulation of uptake by insulin. Epinephrine decreased the phosphorylation of 2-deoxyglucose, however, and caused the intracellular accumulation of free glucose. These last two effects were more prominent in the presence of insulin. Whereas epinephrine caused large rises in glucose-6-P and fructose-6-P, insulin did not alter the concentration of these metabolites either in the absence or presence of epinephrine.

These data indicate that: (a) epinephrine has a stimulatory effect on glucose uptake by perfused rat hindlimbs that does not appear to be exerted on skeletal muscle; (b) epinephrine does not affect hexose transport in skeletal muscle; (c) epinephrine inhibits insulin-stimulated glucose uptake in skeletal muscle by inhibiting glucose phosphorylation. It is hypothesized that the inhibition of glucose phosphorylation is due to the stimulation of glycogenolysis, which leads to the accumulation of hexose phosphates, which inhibit hexokinase.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 706
page 706
icon of scanned page 707
page 707
icon of scanned page 708
page 708
icon of scanned page 709
page 709
icon of scanned page 710
page 710
icon of scanned page 711
page 711
icon of scanned page 712
page 712
icon of scanned page 713
page 713
Version history
  • Version 1 (September 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts