Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Impaired beta adrenergic receptor binding and function in cystic fibrosis neutrophils.
S P Galant, … , J Herbst, C Wood
S P Galant, … , J Herbst, C Wood
Published July 1, 1981
Citation Information: J Clin Invest. 1981;68(1):253-258. https://doi.org/10.1172/JCI110241.
View: Text | PDF
Research Article

Impaired beta adrenergic receptor binding and function in cystic fibrosis neutrophils.

  • Text
  • PDF
Abstract

Cystic fibrosis (CF), a genetic disease characterized by abnormalities of exocrine gland and mucociliary function, has recently been shown to be associated with abnormal adrenergic and cholinergic physiologic responses in addition to decreased beta adrenergic-induced cyclic AMP generation in human leukocytes. In this study we have attempted to elucidate the nature of this hyporesponsiveness by assessing beta adrenergic receptor number and affinity (KD) in the intact neutrophil using the antagonist ligand [3H] dihydroalprenolol and cyclic AMP responses to isoproterenol in addition to histamine, and prostaglandin E1 in CF subjects, CF obligate heterozygotes (CFH), and normal control subjects. CF patients had significantly less (p less than 0.025) cyclic AMP stimulation above basals levels with isoproterenol (0.1 microM to 0.1 mM), compared with control values, but no consistent differences between groups were noted with histamine or PGE1. CF neutrophils had significantly fewer (p less than 0.005) beta adrenergic receptors per neutrophil (398.0 +/- 54.2 vs. 819.4 +/- 67.2) compared with control neutrophils, but the KD (0.740 +/- 0.11 vs. 0.630 +/- 0.05 nM) did not differ significantly (p greater than 0.05). There was no correlation between clinical severity and either cyclic AMP generation or dihydroalprenolol binding (r = 0.27 and 0.24, respectively, p greater than 0.05). The CFH group had approximately 50% of the cyclic AMP stimulation compared with controls, but the number (909.8 +/- 89.3) and KD (0.710 +/- 0.09 nM) of their beta adrenergic receptors were indistinguishable from control subjects. These findings suggest "down regulation" of the beta receptor in the CF patient. The cause of this remains unknown. Although the etiology of the decreased cyclic AMP responses in CFH was not due to decreased beta adrenergic receptors as assessed by antagonist ligand binding, further studies inthe CFH group to include agonist binding, receptor-adenylate cyclase coupling, intrinsic adenylate cyclase activity, and catecholamine metabolism may help determine the basic cause of beta adrenergic hyperesposiveness in both CFH and CF.

Authors

S P Galant, L Norton, J Herbst, C Wood

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 125 1
PDF 40 7
Scanned page 202 1
Citation downloads 52 0
Totals 419 9
Total Views 428
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts