Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (97)

Advertisement

Research Article Free access | 10.1172/JCI110163

Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat.

S A Kempson, G Colon-Otero, S Y Ou, S T Turner, and T P Dousa

Find articles by Kempson, S. in: PubMed | Google Scholar

Find articles by Colon-Otero, G. in: PubMed | Google Scholar

Find articles by Ou, S. in: PubMed | Google Scholar

Find articles by Turner, S. in: PubMed | Google Scholar

Find articles by Dousa, T. in: PubMed | Google Scholar

Published May 1, 1981 - More info

Published in Volume 67, Issue 5 on May 1, 1981
J Clin Invest. 1981;67(5):1347–1360. https://doi.org/10.1172/JCI110163.
© 1981 The American Society for Clinical Investigation
Published May 1, 1981 - Version history
View PDF
Abstract

In these experiments we investigated whether NAD could serve as an intracellular modulator of the brush border membrane (BBM) transport of inorganic phosphate (Pi). NAD, both oxidized (NAD+) and reduced (NADH) form, inhibited the Na+-dependent uptake of 32Pi in the concentration range of 10-300 microM NAD when added in vitro to BBM vesicles isolated from rat kidney cortex, but did not inhibit BBM uptake of D-[3H]glucose or BBM uptake of 22Na+. Neither nicotinamide (NiAm) nor adenosine alone influenced BBM uptake of 32Pi. NAD had a similar relative effect (percent inhibition) in BBM from rats stabilized on low Pi diet (0.07% Pi), high Pi diet (1.2% Pi), or normal Pi diet (0.7% Pi). Subsequently, we examined the renal effects of changing the tissue NAD level in vivo. Rats stabilized on low Pi diet were injected intraperitoneally with NiAm (0.25-1.0 g/kg body wt); urinary excretions of Pi (UPiV), of fluid, and of other solutes were measured before and after NiAm injection, then renal cortical tissue nucleotide content was determined, and a BBM fraction was isolated for transport measurements. In BBM from NiAm-treated rats, the Na+-dependent uptake of 32Pi was decreased, but BBM uptake of D-[3H]glucose and BBM uptake of 22Na+ were not changed. NiAm injection elicited an increase in NAD+ (maximum change, 290%), a lesser increase in NADH (maximum change, +45%), but no change in the content of ATP or cyclic AMP in the renal cortex. Na+-dependent BBM uptake of 32Pi ws inversely correlated with NAD+ content in renal cortex (r = -0.77 +/- 0.1; P less than 0.001) and with UPiV (r = -0.67 +/- 0.13; P less than 0.01). NAD+ in renal cortex was positively correlated with UPiV (r = 0.88 +/- 0.05; P less than 0.001). Injection of NiAm elicited a marked increase in UPiV, but no change in excretions of creatinine or K+, or in urine flow; excretion of Na+ and Ca declined. NiAm injection caused similar renal responses, in normal and in thyroparathyroidectomized rats, as well as in rats on normal Pi diet and low Pi diet. We conclude that NAD can serve as an intracellular modulator (inhibitor) of Na+-dependent transport of Pi across the renal luminal BBM and across the proximal tubular wall by its direct interaction with BBM. We propose that at least some hormonal and/or metabolic stimuli elicit phosphaturia by increasing NAD+ in cytoplasm of proximal tubular cells.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1347
page 1347
icon of scanned page 1348
page 1348
icon of scanned page 1349
page 1349
icon of scanned page 1350
page 1350
icon of scanned page 1351
page 1351
icon of scanned page 1352
page 1352
icon of scanned page 1353
page 1353
icon of scanned page 1354
page 1354
icon of scanned page 1355
page 1355
icon of scanned page 1356
page 1356
icon of scanned page 1357
page 1357
icon of scanned page 1358
page 1358
icon of scanned page 1359
page 1359
icon of scanned page 1360
page 1360
Version history
  • Version 1 (May 1, 1981): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (97)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts