Patterns of bone loss in the axial and the appendicular skeleton were studied in 185 normal volunteers (105 women and 82 men; age range, 20--89 yr) and in 76 women and 9 men with vertebral fractures due to osteoporosis. Bone mineral density was measured in vivo at the lumbar spine (predominantly trabecular bone) by dual photon absorptiometry and at the midradius (greater than 95% cortical bone) and distal radius (75% cortical and 25% trabecular bone) by single photon absorptiometry. In normal women, bone diminution from the vertebrae began in young adulthood and was linear. In the appendicular skeleton, bone diminution did not occur until age 50 yr, was accelerated from aged 51 to 65 yr, and then decelerated somewhat after age 65 yr. Overall bone diminution throughout life was 47% for the vertebrae, 30% for the midradius, and 39% for the distal radius. In normal men, vertebral and appendicular bone diminution with aging was minimal or insignificant. Mean bone mineral density was lower in patients with osteoporosis than in age- and sex-matched normal subjects at all three scanning sites, although spinal measurements discriminated best; however, there was considerable overlap. By age 65 yr, half of the normal women (and by age 85 yr, virtually all of them) had vertebral bone mineral density values below the 90th percentile of women with vertebral fractures and, thus, might be considered to have asymptomatic osteoporosis. For men, the degree of overlap was less. The data suggest that disproportionate loss of trabecular bone from the axial skeleton is a distinguishing characteristic of spinal osteoporosis.
B L Riggs, H W Wahner, W L Dunn, R B Mazess, K P Offord, L J Melton 3rd
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 656 | 39 |
105 | 47 | |
Scanned page | 404 | 51 |
Citation downloads | 76 | 0 |
Totals | 1,241 | 137 |
Total Views | 1,378 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.