Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (42)

Advertisement

Research Article Free access | 10.1172/JCI109972

Inhibition of Renal Metabolism. Relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule.

P C Brazy, R S Balaban, S R Gullans, L J Mandel, and V W Dennis

Find articles by Brazy, P. in: JCI | PubMed | Google Scholar

Find articles by Balaban, R. in: JCI | PubMed | Google Scholar

Find articles by Gullans, S. in: JCI | PubMed | Google Scholar

Find articles by Mandel, L. in: JCI | PubMed | Google Scholar

Find articles by Dennis, V. in: JCI | PubMed | Google Scholar

Published December 1, 1980 - More info

Published in Volume 66, Issue 6 on December 1, 1980
J Clin Invest. 1980;66(6):1211–1221. https://doi.org/10.1172/JCI109972.
© 1980 The American Society for Clinical Investigation
Published December 1, 1980 - Version history
View PDF
Abstract

These studies examine the inhibitory effects of arsenate on the transport of sodium, phosphate, glucose, and para-aminohippurate (PAH) as well as oxidative metabolism by proximal convoluted tubules from the rabbit kidney. Transport rates were measured with radioisotopes in isolated and perfused segments. Metabolic activity was monitored through oxygen-consumption rates and HADH fluorescence in parallel studies in suspensions of cortical tubules. The addition of 1mM arsenate to the perfusate reduced fluid absorption rates from 1.24 +/- 0.17 to 0.66 +/- 0.19 nl/nm.min (P < 0.01) and lumen-to-bath phosphate transport from 9.93 +/- 3.47 to 4.25 +/- 1.08 pmol/mm.min (P < 0.01). Similar concentrations of arsenate reduced glucose transport only slightly from 66.1 +/- 6.0 to 56.8 +/-4 4.6 pmol/mm.min (P < 0.05) and had no effect of PAH secretion. Removing phosphate from the perfusate did not affect the net transport of sodium or glucose. In suspensions of tubules, arsenate increased oxygen consumption rates by 20.5 +/- 2.9% and decreased NADH fluorescence by 10.8 +/- 1.5%. These effects on metabolism were concentration dependent and magnified in the presence of ouabain. The data indicate that arsenate's main effect is to uncouple oxidative phosphorylation, and that graded uncoupling of oxidative metabolism causes graded reductions in the net transport of both sodium and phosphate. Glucose transport is inhibited only slightly and PAH secretion is not affected. Thus, partial as opposed to complete inhibition of metabolism reveals that different relationships exist between net sodium transport and the transport of phosphate, glucose, and PAH by the proximal renal tubule.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1211
page 1211
icon of scanned page 1212
page 1212
icon of scanned page 1213
page 1213
icon of scanned page 1214
page 1214
icon of scanned page 1215
page 1215
icon of scanned page 1216
page 1216
icon of scanned page 1217
page 1217
icon of scanned page 1218
page 1218
icon of scanned page 1219
page 1219
icon of scanned page 1220
page 1220
icon of scanned page 1221
page 1221
Version history
  • Version 1 (December 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (42)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts