Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Identification of a congenital dysthrombin, thrombin Quick.
R A Henriksen, … , M E Nesheim, K G Mann
R A Henriksen, … , M E Nesheim, K G Mann
Published November 1, 1980
Citation Information: J Clin Invest. 1980;66(5):934-940. https://doi.org/10.1172/JCI109961.
View: Text | PDF
Research Article

Identification of a congenital dysthrombin, thrombin Quick.

  • Text
  • PDF
Abstract

A dysprothrombin designated prothrombin Quick, is isolated from the plasma of an individual with < 2% of normal functional prothrombin activity and 34% of the normal prothrombin level by immunologic assay. With Factor Xa or taipan snake venom as activators, a fragmentation pattern identical to that of normal prothrombin is observed on gel electrophoresis in dodecylsulfate. This evidence combined with the observed barium citrate adsorption of prothrombin Quick and the low activity suggests that the defect in prothrombin Quick is in the thrombin portion of the molecule. Thrombin Quick is isolated and comigrates with thrombin on dodecyl sulfate gel electrophoresis, either reduced or nonreduced. The activity of thrombin Quick on several biological substrates of thrombin is investigated. Relative to normal thrombin, thrombin Quick is 1/200 as active on fibrinogen and 1/20-1/50 as effective in activating Factors V and VIII and aggregating platelets. A complex with antithrombin III is detected by dodecyl sulfate gel electrophoresis. Further investigation with the active site titrant, dansylanginine-N-(3-ethyl-1,5-pentanediyl)amide showed that the thrombin Quick preparation has the same affinity for the titrant as thrombin, but apparently only 40% active sites per mole protein are titrable.

Authors

R A Henriksen, W G Owen, M E Nesheim, K G Mann

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 83 2
PDF 45 6
Scanned page 229 2
Citation downloads 56 0
Totals 413 10
Total Views 423
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts