We have previously reported that in hypothyroid turkeys the number of beta-adrenergic receptors in intact erythrocytes is reduced by ∼50% without any changes in the affinity of the receptor for the agonist, isoproterenol. In view of the physiological action of the catecholamines to stimulate bidirectional ion fluxes in these cells, we have now examined the possibility that the decrease in beta receptor number might be associated with concomitant changes in catecholamine-dependent potassium ion transport. Hypothyroid turkey erythrocytes display decreased sensitivity to isoproterenol-stimulated potassium influx. Half-maximal stimulation of potassium influx occurs at 9.2±1.7 nM in hypothyroid cells as opposed to only 3.8±0.4 nM in normal cells (P < 0.005). A maximal stimulatory concentration of isoproterenol (100 nM) leads to the same increment in ion flux in erythrocytes from hypothyroid and normal turkeys. Analysis of the quantitative relationship between isoproterenol concentration, receptor occupancy, and associated effects upon potassium influx shows that at low levels of isoproterenol, where occupancy is linear with agonist concentration, occupation of a given number of beta receptors leads to a stimulation of potassium transport that is identical in erythrocytes from normal and hypothyroid turkeys. Thus, decreased sensitivity to catecholamine-stimulated potassium transport in hypothyroidism can be attributed to the decrease in receptor number and the resulting two- to threefold higher isoproterenol concentration required for occupancy of the same number of beta receptors. Once a single receptor is occupied, however, the more distal components of the sequence of events mediating the physiological response to beta-adrenergic agonists in the hypothyroid cell function as they do under normal circumstances. It would appear, therefore, that the decrease in sensitivity to isoproterenol-dependent ion flux in the hypothyroid turkey erythrocyte can be accounted for solely by the decrease in receptor number. These changes are shown to occur in the absence of any modifications in the number of Na+-K+ ATPase effector units per cell.
Haruyasu Furukawa, John N. Loeb, John P. Bilezikian
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 89 | 0 |
52 | 16 | |
Scanned page | 276 | 4 |
Citation downloads | 51 | 0 |
Totals | 468 | 20 |
Total Views | 488 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.