Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Phenolic and Tyrosyl Ring Deiodination of Iodothyronines in Rat Brain Homogenates
Michael M. Kaplan, Kimberlee A. Yaskoski
Michael M. Kaplan, Kimberlee A. Yaskoski
Published September 1, 1980
Citation Information: J Clin Invest. 1980;66(3):551-562. https://doi.org/10.1172/JCI109887.
View: Text | PDF
Research Article Article has an altmetric score of 3

Phenolic and Tyrosyl Ring Deiodination of Iodothyronines in Rat Brain Homogenates

  • Text
  • PDF
Abstract

Conversion of thyroxine (T4) to 3,5,3′-triiodothyronine (T3) in rat brain has recently been shown in in vivo studies. This process contributes a substantial fraction of endogenous nuclear T3 in the rat cerebral cortex and cerebellum. Production of T4 metabolites besides T3 in the brain has also been suggested. To determine the nature of these reactions, we studied metabolism of 0.2-1.0 nM [125I]T4 and 0.1-0.3 nM [131I]T3 in whole homogenates and subcellular fractions of rat cerebral cortex and cerebellum. Dithiothreitol (DTT) was required for detectable metabolic reactions: 100 mM DTT was routinely used. Ethanol extracts of incubation mixtures were analyzed by paper chromatography in t-amyl alcohol:hexane:ammonia and in 1-butanol:acetic acid. Rates of production of iodothyronines from T4 and T3 were greater at pH 7.5 than at 6.4 or 8.6 and greater at 37°C than at 22° or 4°C. Lowering the pH, reducing the protein or DTT concentrations, and preheating homogenates to 100°C all increased excess I− production but reduced iodothyronine production.

Authors

Michael M. Kaplan, Kimberlee A. Yaskoski

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 191 4
PDF 52 10
Scanned page 387 5
Citation downloads 42 0
Totals 672 19
Total Views 691
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 clinical guideline sources
24 readers on Mendeley
See more details