Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Cobalamin malabsorption due to nondegradation of R proteins in the human intestine. Inhibited cobalamin absorption in exocrine pancreatic dysfunction.
G Marcoullis, … , M Jimenez, P Gerard
G Marcoullis, … , M Jimenez, P Gerard
Published September 1, 1980
Citation Information: J Clin Invest. 1980;66(3):430-440. https://doi.org/10.1172/JCI109873.
View: Text | PDF
Research Article

Cobalamin malabsorption due to nondegradation of R proteins in the human intestine. Inhibited cobalamin absorption in exocrine pancreatic dysfunction.

  • Text
  • PDF
Abstract

In vivo studies demonstrate that the pancreatic enzymes and the ionic environment in the upper gastrointestinal tract are essential determining factors for transport and absorption of cobalamin in man. Jejunal fluid was aspirated from healthy human volunteers after administration of cyano[57Co]cobalamin preparations. Immunochemical analysis of the aspirates demonstrated that all isotopic vitamin was transferred to a protein that is identical to the gastric intrinsic factor in terms of molecular mass (57,500), ionic nature (mean pI, 5.09), and reactivity with anti-intrinsic factor sera. However, in the aspirates from patients with exocrine pancreatic dysfunction the vitamin was found to be coupled > 60% to a protein identical to R proteins in terms of molecular mass (125,000), ionic nature (mean pI, 3.51), and reactivity with anti-R protein and anti-intrinsic factor sera. The preferential transfer of cobalamin to R proteins in the patients and to intrinsic factor in healthy subjects was associated, respectively, with low and normal levels of pancreatic enzymes in the intestine and these in turn were paralleled respectively by impaired and normal ileal absorption of cobalamin. These findings confirm the suggestion that the formation of unabsorbable cobalamin complexes may be the reason of impaired vitamin absorption in exocrine pancreatic insufficiency. Observations made with other selected patients demonstrate: (a) that decreased enzyme activity and nondegradation of R proteins may also be due to nonactivation of pancreatic zymogens in an acidic pH of the intestinal juice the vitamin transported to the jejunum couples to intrinsic factor when pancreatic function is normal, and to intrinsic factor and R protein in exocrine pancreatic insufficiency. The observations made with these selected patients may explain why not all patients with exocrine pancreatic insufficiency develop imparied cobalamin absorption, and also why the malabsorption is corrected by the administration of bicarbonate in certain patients.

Authors

G Marcoullis, Y Parmentier, J P Nicolas, M Jimenez, P Gerard

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 138 6
PDF 48 18
Scanned page 458 2
Citation downloads 55 0
Totals 699 26
Total Views 725
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts