Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Rapid Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Cerebral Cortex and Cerebellum
F. R. Crantz, P. R. Larsen
F. R. Crantz, P. R. Larsen
Published April 1, 1980
Citation Information: J Clin Invest. 1980;65(4):935-938. https://doi.org/10.1172/JCI109749.
View: Text | PDF
Rapid Publication Article has an altmetric score of 3

Rapid Thyroxine to 3,5,3′-Triiodothyronine Conversion and Nuclear 3,5,3′-Triiodothyronine Binding in Rat Cerebral Cortex and Cerebellum

  • Text
  • PDF
Abstract

Thyroxine (T4) to 3,5,3′-triiodothyronine (T3) conversion was evaluated in vivo in cerebral cortex, cerebellum, and anterior pituitary of male euthyroid Sprague-Dawley rats. Tracer quantities of 125I-T4 and 131I-T3 were injected into controls and iopanoic acid-pretreated rats 3 h before isolation of nuclei from these tissues. Specifically-bound nuclear 131I-T3, denoted T3(T3); 125I-T3, denoted T3(T4); and 125I-T4 were extracted and identified by chromatography. Plasma iodothyronines were similarly quantitated. In control rats, nuclear T3(T3) (percent dose per milligram DNA × 10−4) was 174±31 in cerebral cortex, 50±9 in cerebellum, and 932±158 in pituitary (all values, mean±SEM). Nuclear T3(T4) (percent dose per milligram DNA × 10−4) was 23.3±3.3 in cortex, 3.5±0.6 in cerebellum, and 39.4±6.9 in pituitary. Two-thirds of nuclear T3(T4) derived from local T4 to T3 conversion. Nuclear T3(T4) in all tissues was reduced to less than 15% of its control value by iopanoic acid treatment and all of the residual nuclear T3(T4) could be accounted for by plasma T3(T4). Nuclear T3(T3) binding was not inhibited by iopanoic acid. These results indicate there is rapid local T4 to T3 conversion in rat brain and nuclear binding of the T3 produced. We have previously found that local T3(T4) production is the source of ∼50% of the T3 in rat anterior pituitary. The present observations that the ratio of locally derived nuclear T3(T4) to nuclear T3(T3) is much higher in cerebral cortex (0.1) and cerebellum (0.04) than in anterior pituitary (0.015) suggest that this locally produced T3(T4) is the predominant source of intracellular T3 in these portions of rat brain.

Authors

F. R. Crantz, P. R. Larsen

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 140 2
PDF 35 9
Scanned page 139 3
Citation downloads 56 0
Totals 370 14
Total Views 384
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
15 readers on Mendeley
See more details