Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (196)

Advertisement

Research Article Free access | 10.1172/JCI109663

Influence of the Escherichia coli capsule on complement fixation and on phagocytosis and killing by human phagocytes.

M A Horwitz and S C Silverstein

Find articles by Horwitz, M. in: PubMed | Google Scholar

Find articles by Silverstein, S. in: PubMed | Google Scholar

Published January 1, 1980 - More info

Published in Volume 65, Issue 1 on January 1, 1980
J Clin Invest. 1980;65(1):82–94. https://doi.org/10.1172/JCI109663.
© 1980 The American Society for Clinical Investigation
Published January 1, 1980 - Version history
View PDF
Abstract

To define mechanisms by which polysaccharide capsules confer enhanced virulence on gram-negative bacteria, we examined the effect of the Escherichia coli capsule on complement fixation to the bacterial surface and on phagocytosis and killing of these bacteria by mouse macrophages and human polymorphonuclear leukocytes (PMN) and monocytes. When E. coli were attached to mouse macrophages with concanavalin A, the macrophages readily phagocytosed unencapsulated but not encapsulated bacteria even in the presence of fresh mouse serum; macrophages did not phagocytose encapsulated E. coli unless antibacterial or anti-Con A antibody was added. Similarly, when these bacteria were attached to human PMN with Con A, PMN ingested unencapsulated but not encapsulated E. coli. PMN phagocytosed and killed encapsulated serum-resistant E. coli only in the presence of both complement and antibacterial antibody; PMN phagocytosed and killed unencapsulated E. coli of the same strain in the presence of complement alone. Fluorescence microscopy showed that antibody had to be present for encapsulated but not unencapsulated E. coli to fix complement to its surface. To examine the role of the complement receptors of human PMN and monocytes in phagocytosis and killing of encapsulated E. coli, we used human and rabbit antibacterial immunoglobulin (Ig)M to fix complement to the bacteria. PMN and monocytes phagocytosed and killed encapsulated E. coli in the presence of both IgM and complement, but not in the presence of either serum opsonin alone. In the presence of antibacterial IgG, PMN and monocytes required complement to effectively phagocytose and kill the E. coli. We conclude that (a) attachment by itself results in ingestion of unencapsulated but not encapsulated E. coli; (b) under physiologic conditions, E. coli are not phagocytosed or killed the absence of antibody, the E. coli capsule blocks complement fixation to the bacterial surface probably by masking surface components, such as lipopolysaccharide, capable of activating the complement pathway; (d) the E. coli capsule imposes a requirement for specific antibacterial antibody for complement fixation; and (e) the complement receptor of human PMN and monocytes mediates phagocytoses of complement-coated encapsulated bacteria and is the primary mediator of phagocytosis and killing of these bacteria.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 82
page 82
icon of scanned page 83
page 83
icon of scanned page 84
page 84
icon of scanned page 85
page 85
icon of scanned page 86
page 86
icon of scanned page 87
page 87
icon of scanned page 88
page 88
icon of scanned page 89
page 89
icon of scanned page 90
page 90
icon of scanned page 91
page 91
icon of scanned page 92
page 92
icon of scanned page 93
page 93
icon of scanned page 94
page 94
Version history
  • Version 1 (January 1, 1980): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (196)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts