The abnormal shape and poor deformability of the sickled erythrocyte (RBC) have generally been held responsible for the microvascular occlusions of sickle cell disease. However, there is no correlation between the clinical severity of this disease and the presence of sickled RBC. In searching for additional factors that might contribute to the pathophysiology of sickle cell disease, we have investigated the possibility that sickle RBC might be less than normally repulsive of the vascular endothelium. After RBC suspensions are allowed to settle onto plates of cultured human endothelial cells, normal RBC are completely removed by as few as six washes. In contrast, sickle RBC remain adherent despite multiple washes. On subconfluent culture plates, normal RBC are distributed randomly, whereas sickle RBC cluster around endothelial cells. Sickle RBC adherence is not enhanced by deoxygenation but does increase with increasing RBC density. The enzymatic removal of membrane sialic acid greatly diminishes the adherence of sickle RBC to endothelial cells, suggesting that sialic acid participates in this abnormal cell-cell interaction. Although net negative charge appears normal, sickle RBC mainfest an abnormal clumping of negative surface charge as demonstrated by localization of cationized ferritin. These abnormalities are reproduced in normal RBC loaded with nonechinocytogenic amounts of calcium. We conclude that sickle RBC adhere to vascular endothelial cells in vitro, perhaps caused by a calcium-induced aberration of membrane topography. This adherence may be a pathogenetic factor in the microvascular occlusions characteristic of sickle cell disease.
Robert P. Hebbel, Osamu Yamada, Charles F. Moldow, Harry S. Jacob, James G. White, John W. Eaton
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 285 | 10 |
142 | 36 | |
Figure | 0 | 3 |
Scanned page | 230 | 15 |
Citation downloads | 42 | 0 |
Totals | 699 | 64 |
Total Views | 763 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.