Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Mechanism of Inhibition of Proximal Tubule Fluid Reabsorption after Exposure of the Rat Kidney to the Physical Effects of Expansion of Extracellular Fluid Volume
Iekuni Ichikawa, Barry M. Brenner
Iekuni Ichikawa, Barry M. Brenner
Published November 1, 1979
Citation Information: J Clin Invest. 1979;64(5):1466-1474. https://doi.org/10.1172/JCI109605.
View: Text | PDF
Research Article

Mechanism of Inhibition of Proximal Tubule Fluid Reabsorption after Exposure of the Rat Kidney to the Physical Effects of Expansion of Extracellular Fluid Volume

  • Text
  • PDF
Abstract

The natriuresis and concomitant decline in absolute proximal reabsorption (APR) that occur in rats in response to saline loading are blunted markedly when renal perfusion pressure is reduced immediately before, but not after, the volume load. To ascertain the mechanism responsible for these differences between early clamp (EC) vs. late clamp (LC), intracapillary and interstitial determinants of peritubular capillary uptake of APR were measured in seven LC and seven EC Munich-Wistar rats before and after isotonic saline loading (80% body wt). With volume expansion in LC animals, we observed a marked decline in APR (averaging 11±1 nl/min), associated with large increases in urinary sodium excretion rate, which averaged 8±2 μeq/min. In EC, the changes in urinary sodium excretion rate (+1±0 μeq/min) and APR (−3±1 nl/min) with volume expansion were smaller in magnitude. Since peritubular capillary reabsorption coefficient and mean peritubular transcapillary hydraulic pressure difference did not change with saline loading in LC, the marked fall in APR was attributed primarily to a measured large decline in mean peritubular transcapillary oncotic pressure difference (δ̄π̄). Despite an equivalent mean fall in δ̄π̄ with volume expansion in EC, near-constancy of APR was found to be associated with a simultaneous and equivalent decline in mean peritubular transcapillary hydraulic pressure difference (a consequence of decreased mean peritubular capillary hydraulic pressure), which effectively offset the fall in δ̄π̄. These results demonstrate the importance of hydraulic pressure patterns of the peritubular capillaries in modulating APR and are consistent with the view that Starling forces across the postglomerular microcirculation play a fundamental role in determining APR.

Authors

Iekuni Ichikawa, Barry M. Brenner

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 106 0
PDF 67 14
Scanned page 373 4
Citation downloads 82 0
Totals 628 18
Total Views 646
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts