Plasma fibrinopeptide B (Bβ1-14 or FPB) immunoreactivity was studied by radioimmunoassay in patients who received intrauterine infusion of hypertonic saline to terminate pregnancy. FPB immunoreactivity increased with thrombin treatment (TIFPB) suggesting the presence of a larger FPB-containing peptide, since purified FPB is not altered by thrombin, whereas thrombin increases the immunoreactivity of Bβ1-42 (which includes FPB) 10-fold. TIFPB immunoreactivity in plasma, drawn 4 h after hypertonic saline infusion eluted from Sephadex G-50 similarly to isolated Bβ1-42. Streptokinase, incubated with normal plasma progressively generated TIFPB immunoreactivity, which showed a major component which eluted from Sephadex G-50 similarly to Bβ1-42. Streptokinase generated TIFPB much more rapidly in reptilase-treated plasma that contains fibrin I, (which still includes FPB), indicating that fibrin I is preferred over fibrinogen as a substrate for plasmin cleavage of arginine (Bβ42)-alanine (Bβ43). Serial studies were then made in 10 patients receiving intrauterine hypertonic saline. Fibrinopeptide A (FPA) levels rose immediately, reached a peak between 1 and 2 h, were declining at 4 h, and were normal at 24 and 48 h. TIFPB levels rose slightly in the 1st h, reached a peak at 4 h, and had returned to base-line values at 24 h. Serum fibrinogen degradation product levels were unchanged at 1 h, reached their highest level at 4 h, and were still markedly elevated at 24 and 48 h. Fibrinogen levels dropped slightly being lowest at 4 and 24 h. Platelet counts declined in parallel with the fibrinogen levels over the first 4 h, but continued to decrease through 48 h. Beta thromboglobulin (βTG) levels generally paralleled FPA levels whereas platelet factor 4 (PF4) levels showed only slight changes. The data indicate that immediately after intrauterine hypertonic saline infusion thrombin is formed that cleaves FPA from fibrinogen to produce fibrin I and releases βTG and PF4 from platelets. Later plasmin cleaves Bβ1-42 from fibrin I to produce fragment X, which is further degraded to form serum fibrinogen degradation products. This sequence of proteolysis indicates that plasmin action on fibrin I serves as a mechanism that regulates fibrin II formation by removing the Bβ chain cleavage site, which is required for thrombin action in converting fibrin I to fibrin II.
H. L. Nossel, J. Wasser, K. L. Kaplan, K. S. Lagamma, I. Yudelman, R. E. Canfield