Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (212)

Advertisement

Free access | 10.1172/JCI109444

Human Intestinal Lipoproteins: STUDIES IN CHYLURIC SUBJECTS

Peter H. R. Green, Robert M. Glickman, Christopher D. Saudek, Conrad B. Blum, and Alan R. Tall

Gastrointestinal Unit, College of Physicians & Surgeons of Columbia University, New York 10032

Department of Medicine, Cornell University Medical College, New York 10021

Find articles by Green, P. in: PubMed | Google Scholar

Gastrointestinal Unit, College of Physicians & Surgeons of Columbia University, New York 10032

Department of Medicine, Cornell University Medical College, New York 10021

Find articles by Glickman, R. in: PubMed | Google Scholar

Gastrointestinal Unit, College of Physicians & Surgeons of Columbia University, New York 10032

Department of Medicine, Cornell University Medical College, New York 10021

Find articles by Saudek, C. in: PubMed | Google Scholar

Gastrointestinal Unit, College of Physicians & Surgeons of Columbia University, New York 10032

Department of Medicine, Cornell University Medical College, New York 10021

Find articles by Blum, C. in: PubMed | Google Scholar

Gastrointestinal Unit, College of Physicians & Surgeons of Columbia University, New York 10032

Department of Medicine, Cornell University Medical College, New York 10021

Find articles by Tall, A. in: PubMed | Google Scholar

Published July 1, 1979 - More info

Published in Volume 64, Issue 1 on July 1, 1979
J Clin Invest. 1979;64(1):233–242. https://doi.org/10.1172/JCI109444.
© 1979 The American Society for Clinical Investigation
Published July 1, 1979 - Version history
View PDF
Abstract

To explore the role of the human intestine as a source of apolipoproteins, we have studied intestinal lipoproteins and apoprotein secretion in two subjects with chyluria (mesenteric lymphatic—urinary fistulae). After oral corn oil, apolipoprotein A-I (apoA-I) and apolipoprotein A-II (apoA-II) output in urine increased in parallel to urinary triglyceride. One subject, on two occasions, after 40 g of corn oil, excreted 8.4 and 8.6 g of triglyceride together with 196 and 199 mg apoA-I and on one occasion, 56 mg apoA-II. The other subject, after 40 g corn oil, excreted 0.3 g triglyceride and 17.5 mg apoA-I, and, after 100 g of corn oil, excreted 44.8 mg apoA-I and 5.8 mg apoA-II. 14.5±2.1% of apoA-I and 17.7±4.3% of apoA-II in chylous urine was in the d < 1.006 fraction (chylomicrons and very low density lipoprotein). Calculations based on the amount of apoA-I and apoA-II excreted on triglyceride-rich lipoproteins revealed that for these lipid loads, intestinal secretion could account for 50 and 33% of the calculated daily synthetic rate of apoA-I and apoA-II, respectively. Similarly, subject 2 excreted 48-70% and 14% of the calculated daily synthetic rate of apoA-I and apoA-II, respectively.

Chylous urine contained chylomicrons, very low density lipoproteins and high density lipoproteins, all of which contained apoA-I. Chylomicrons and very low density lipoproteins contained a previously unreported human apoprotein of 46,000 mol wt. We have called this apoprotein apoA-IV because of the similarity of its molecular weight and amino acid composition to rat apoA-IV. In sodium dodecyl sulfate gels, chylomicron apoproteins consisted of apoB 3.4±0.7%, apoA-IV 10.0±3.3%, apoE 4.4±0.3%, apoA-I 15.0±1.8%, and apoC and apoA-II 43.3±11.3%. Very low density lipoprotein contained more apoB and apoA-IV and less apoC than chylomicrons. Ouchterlony immunodiffusion of chylomicron apoproteins revealed the presence of apoC-I, apoC-II, and apoC-III. In contrast, plasma chylomicrons isolated during a nonchyluric phase revealed a markedly altered chylomicron apoprotein pattern when compared with urinary chylomicrons. The major apoproteins in plasma chylomicrons were apoB, apoE, and the C peptides: no apoA-I or apoA-IV were present in sodium dodecyl sulfate gels indicating that major changes in chylomicron apoproteins occur during chylomicron metabolism. When incubated in vitro with plasma, urinary chylomicrons lost apoA-I and apoA-IV and gained apoE and apoC. Loss of apoA-I and apoA-IV was dependent upon the concentration of high density lipoproteins in the incubation mixture.

These studies demonstrate that the human intestine secretes significant amounts of apoA-I and apoA-II during lipid absorption. Subsequent transfer of apoproteins from triglyceride-rich lipoproteins to other plasma lipoproteins may represent a mechanism whereby the intestine contributes to plasma apoprotein levels.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 233
page 233
icon of scanned page 234
page 234
icon of scanned page 235
page 235
icon of scanned page 236
page 236
icon of scanned page 237
page 237
icon of scanned page 238
page 238
icon of scanned page 239
page 239
icon of scanned page 240
page 240
icon of scanned page 241
page 241
icon of scanned page 242
page 242
Version history
  • Version 1 (July 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (212)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts