Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 9

See more details

Referenced in 1 policy sources
Referenced in 1 Wikipedia pages
Mentioned in 1 Q&A threads
125 readers on Mendeley
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109433

Transport of Steroid Hormones through the Rat Blood-Brain Barrier: PRIMARY ROLE OF ALBUMIN-BOUND HORMONE

William M. Pardridge and Lawrence J. Mietus

Department of Medicine, University of California at Los Angeles School of Medicine, Los Angeles, California 90024

Division Endocrinology & Metabolism, University of California at Los Angeles School of Medicine, Los Angeles, California 90024

Find articles by Pardridge, W. in: JCI | PubMed | Google Scholar

Department of Medicine, University of California at Los Angeles School of Medicine, Los Angeles, California 90024

Division Endocrinology & Metabolism, University of California at Los Angeles School of Medicine, Los Angeles, California 90024

Find articles by Mietus, L. in: JCI | PubMed | Google Scholar

Published July 1, 1979 - More info

Published in Volume 64, Issue 1 on July 1, 1979
J Clin Invest. 1979;64(1):145–154. https://doi.org/10.1172/JCI109433.
© 1979 The American Society for Clinical Investigation
Published July 1, 1979 - Version history
View PDF
Abstract

These studies were undertaken to investigate (a) the permeability properties of the blood-brain barrier (BBB) to the major gonadal and adrenal steroid hormones, and (b) the role of the binding proteins of plasma (albumin and specific globulins) in the regulation of BBB steroid hormone transport.

The permeability of the BBB to [3H]-labeled progesterone, testosterone, estradiol, corticosterone, aldosterone, and cortisol, was measured relative to [14C]butanol, a freely diffusable reference, in the barbiturate anesthetized rat using a tissue sampling-single injection technique. The isotopes were rapidly injected in a 200-μl bolus of Ringer's solution (0.1 g/dl albumin) via the common carotid artery and the percent extraction of unidirectional influx of hormone was determined after a single pass through brain: progesterone, 83±4%; testosterone, 85±1%; estradiol, 83±3%; corticosterone, 39±2%; aldosterone, 3.5±0.8%; and cortisol, 1.4±0.3%. The selective permeability of the BBB was inversely related to the number of hydrogen bonds each steroid formed in aqueous solution and directly related to the respective 1-octanol/Ringer's partition coefficient.

When the bolus injection was 67% human serum, >95% of the labeled steroid was bound as determined by equilibrium dialysis. However, the influx of the steroids through the BBB was inhibited by human serum to a much less extent than would be expected if only the free (dialyzable) hormone was transported; progesterone, estradiol, testosterone, and corticosterone transport was inhibited 18, 47, 70, and 85% respectively, or in proportion to the steroid binding to plasma globulins. Rat serum (67%) only inhibited the transport of these four hormones, 0, 13, 12, and 69%, respectively, reflecting the absence of a sex hormone-binding globulin in rat plasma. However, neonatal rat serum (67%) inhibited progesterone, testosterone, and estradiol transport 0, 0, and 91%, respectively, consistent with the presence of an estradiol-binding protein in neonatal rat serum.

The binding of steroid hormone to bovine albumin in vitro (as determined by equilibrium dialysis) was compared to albumin binding in vivo (as determined by the single injection technique). The ratio of apparent dissociation constant in vivo, KD(app), to the in vitro KD was: ≫200 for progesterone, >200 for testosterone, 120 for estradiol, and 7.7 for corticosterone. Assuming the steady-state condition, the KD(app)/KD was found to be proportional to the BBB permeability for each steroid.

These data demonstrate (a) the selective permeability properties of the BBB to the major steroid hormones is proportional to the tendency of the steroid to partition in a polar lipid phase and is inversely related to the number of hydrogen bond-forming functional groups on the steroid nucleus; (b) the presence of albumin in serum may bind considerable quantities of steroid hormone, but exerts little inhibitory effects on the transport of steroids into brain, whereas globulin-bound hormone does not appear to be transported into brain to a significant extent. Therefore, the hormone fraction in plasma that is available for transport into brain is not restricted to the free (dialyzable) fraction, but includes the larger albumin-bound moiety.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 145
page 145
icon of scanned page 146
page 146
icon of scanned page 147
page 147
icon of scanned page 148
page 148
icon of scanned page 149
page 149
icon of scanned page 150
page 150
icon of scanned page 151
page 151
icon of scanned page 152
page 152
icon of scanned page 153
page 153
icon of scanned page 154
page 154
Version history
  • Version 1 (July 1, 1979): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 9
  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 policy sources
Referenced in 1 Wikipedia pages
Mentioned in 1 Q&A threads
125 readers on Mendeley
See more details