We have studied the fate of inert phagocytized particles in rabbit neutrophils. Neutrophils release significant quantities of preingested oil emulsion. Roughly 50% of an ingested load is released in 40 min at 37 degrees C. By electron microscopy the process of release appears to be by exocytosis: particles appear extruded through a network of processes often accompanied by membranous vesicles. Exocytosis is temperature and glucose dependent but unlike phagocytosis does not require divalent cations. From Coulter counter measurements virtually the entire cell population appears to undergo the phagocytosis-exocytosis sequence. Neutrophils undergoing exocytosis remain intact as determined by direct counts, electron microscopy, and absence of lactate dehydrogenase release. Moreover, by sequentially feeding differently labeled particles, it is shown that the processes of phagocytosis and exocytosis can occur concurrently. Indeed, it is found that ingestion accelerates release. The implications of these phenomena for membrane recycling, lysosomal enzyme release, and the killing of microorganisms are briefly discussed.
R D Berlin, J P Fera, J R Pfeiffer
Usage data is cumulative from November 2023 through November 2024.
Usage | JCI | PMC |
---|---|---|
Text version | 128 | 0 |
68 | 19 | |
Figure | 0 | 3 |
Scanned page | 317 | 9 |
Citation downloads | 34 | 0 |
Totals | 547 | 31 |
Total Views | 578 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.