The cytotoxic nucleoside 2'-deoxyadenosine is excreted in excessive amounts by individuals with genetic deficiency of adenosine deaminase, and may be in part responsible for the severe combined immune dysfunction from which they suffer. Earlier studies from this laboratory showed that 2'-deoxyadenosine causes the irreversible inactivation of the enzyme S-adenosylhomocysteine hydrolase by an active site-directed, "suicide-like" process. In this communication we have demonstrated similar inactivation of S-adenosylhomocysteine hydrolase in hemolysate and in intact erythrocytes, as well as a striking deficiency of S-adenosylhomocysteine hydrolase activity in the erythrocytes of three adenosine deaminase-deficient patients. In vivo suicide-like inactivation of S-adenosylhomocysteine hydrolase by 2'-deoxyadenosine may contribute to the cytotoxicity of 2'-deoxyadenosine and to the immune dysfunction in adenosine deaminase deficiency.
M S Hershfield, N M Kredich, D R Ownby, H Ownby, R Buckley
Usage data is cumulative from January 2024 through January 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 152 | 4 |
62 | 38 | |
Scanned page | 161 | 8 |
Citation downloads | 37 | 0 |
Totals | 412 | 50 |
Total Views | 462 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.