Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Resting Skeletal Muscle Membrane Potential as an Index of Uremic Toxicity: A PROPOSED NEW METHOD TO ASSESS ADEQUACY OF HEMODIALYSIS
James R. Cotton, … , Norman W. Carter, James P. Knochel
James R. Cotton, … , Norman W. Carter, James P. Knochel
Published March 1, 1979
Citation Information: J Clin Invest. 1979;63(3):501-506. https://doi.org/10.1172/JCI109328.
View: Text | PDF

Resting Skeletal Muscle Membrane Potential as an Index of Uremic Toxicity: A PROPOSED NEW METHOD TO ASSESS ADEQUACY OF HEMODIALYSIS

  • Text
  • PDF
Abstract

Electrochemical disturbances of skeletal muscle cells in untreated uremia are characterized by an increase in the intracellular sodium and chloride content, a decrease in intracellular potassium, and a low resting membrane potential. In this study, we have reexamined the foregoing and, in addition, have examined the effects of hemodialysis. Three groups of patients were studied. In the first group of 22 uncomplicated uremic patients, whose creatinine clearance (Ccr) ranged from 2 to 12 cm3/min per 1.73 m2, resting transmembrane potential difference (Em) of skeletal muscle cells was measured. In each of the nine patients whose Ccr ranged between 6.3 and 12 cm3/min, the Em was normal (i.e., −90.8±0.9 mV, mean±SEM). However, as Ccr dropped below 6.3 cm/min, the Em became progressively reduced and assumed a linear relationship with the Ccr.

Authors

James R. Cotton, Terry Woodard, Norman W. Carter, James P. Knochel

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 155 4
PDF 51 11
Scanned page 208 13
Citation downloads 51 0
Totals 465 28
Total Views 493
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts