Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 1

See more details

On 1 videos
9 readers on Mendeley
  • Article usage
  • Citations to this article (75)

Advertisement

Research Article Free access | 10.1172/JCI109176

Hereditary Male Pseudohermaphroditism Associated with an Unstable Form of 5α-Reductase

Mark Leshin, James E. Griffin, and Jean D. Wilson

Department of Internal Medicine and The Eugene McDermott Center for Growth and Development, The University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Leshin, M. in: PubMed | Google Scholar

Department of Internal Medicine and The Eugene McDermott Center for Growth and Development, The University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Griffin, J. in: PubMed | Google Scholar

Department of Internal Medicine and The Eugene McDermott Center for Growth and Development, The University of Texas Southwestern Medical School, Dallas, Texas 75235

Find articles by Wilson, J. in: PubMed | Google Scholar

Published September 1, 1978 - More info

Published in Volume 62, Issue 3 on September 1, 1978
J Clin Invest. 1978;62(3):685–691. https://doi.org/10.1172/JCI109176.
© 1978 The American Society for Clinical Investigation
Published September 1, 1978 - Version history
View PDF
Abstract

The properties of 5α-reductase have been compared in genital skin fibroblasts cultured from five patients from three families (Los Angeles, Dallas, and Dominican Republic) in which hereditary male pseudohermaphroditism has been established to result from deficient conversion of testosterone to dihydrotestosterone.

Despite the fact that 5α-reductase was immeasurable in a homogenate of epididymis removed from one of the Los Angeles patients, 5α-reductase activity was normal in intact fibroblasts and fibroblast extracts from both patients from the Los Angeles family. Although the apparent Km for testosterone was also near normal, the apparent Km for NADPH in these mutants is elevated some 40-fold above normal. Furthermore, the enzyme is not protected against denaturation at 45°C by concentrations of NADPH that stabilize normal 5α-reductase, and in intact fibroblasts from these patients (but not from controls), enzyme activity decreases promptly when protein synthesis is inhibited. We conclude that the mutation in this family results in an unstable enzyme.

In contrast 5α-reductase activity in fibroblast extracts from a patient from the Dominican Republic family is similar to that previously described in two members of the Dallas family, namely total enzyme activity is low at the optimal pH for the normal reaction, and the apparent Km for testosterone is some 20-fold higher than that of the controls. We conclude that the mutations in the Dallas and Dominican Republic families are similar and result in low activity of the enzyme as the result of a decreased affinity for testosterone.

Thus, two distinct types of mutations can produce male pseudohermaphroditism due to deficient dihydrotestosterone formation.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 685
page 685
icon of scanned page 686
page 686
icon of scanned page 687
page 687
icon of scanned page 688
page 688
icon of scanned page 689
page 689
icon of scanned page 690
page 690
icon of scanned page 691
page 691
Version history
  • Version 1 (September 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 1
  • Article usage
  • Citations to this article (75)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

On 1 videos
9 readers on Mendeley
See more details