We studied the effect of furosemide on pulmonary transvascular filtration of fluid and microvascular permeability to plasma proteins by measuring steady-state lung lymph flow and protein flow, pulmonary arterial and left atrial pressures in nine 1-wk-old unanesthetized lambs before and after rapid intravenous infusion of furosemide, 1 mg/kg in 10 experiments and 8 mg/kg in 5 experiments. With rapid diuresis induced by furosemide (an eightfold increase in urine flow), lung vascular pressures decreased, protein concentrations of lymph and plasma increased, and there was a consistent decrease in lymph flow and lymph protein flow, more pronounced after the larger dose. Five additional lambs received 8 mg/kg of furosemide intravenously in the presence of saline-induced pulmonary edema; in these experiments, the decrease in vascular pressures, increase in transvascular protein gradient, and decrease in lymph flow were greater than in lambs without pulmonary edema. These findings suggest that furosemide decreases transvascular filtration of fluid in the lung by diminishing the transvascular hydraulic pressure gradient and increasing the transvascular gradient for protein osmotic pressure. In five acute experiments on anesthetized lambs with kidneys removed, 8 mg/kg of intravenous furosemide decreased lymph flow one-half as much as it did in the presence of kidneys, with no change in lung vascular pressures or protein concentrations. The results of experiments in lambs without kidneys are consistent with a reduction in the vascular surface area for exchange of fluid and protein in the lung.
Richard D. Bland, Douglas D. McMillan, Michael A. Bressack
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 107 | 2 |
57 | 20 | |
Scanned page | 321 | 2 |
Citation downloads | 58 | 0 |
Totals | 543 | 24 |
Total Views | 567 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.