Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 1

See more details

On 1 videos
2 readers on Mendeley
  • Article usage
  • Citations to this article (10)

Advertisement

Research Article Free access | 10.1172/JCI109157

Relationship between the Rate of H+ Transport and Pathways of Glucose Metabolism by Turtle Urinary Bladder

L. H. Norby and John H. Schwartz

Department of Nephrology, Walter Reed Army Institute of Research, Washington, D. C. 20012

Find articles by Norby, L. in: PubMed | Google Scholar

Department of Nephrology, Walter Reed Army Institute of Research, Washington, D. C. 20012

Find articles by Schwartz, J. in: PubMed | Google Scholar

Published September 1, 1978 - More info

Published in Volume 62, Issue 3 on September 1, 1978
J Clin Invest. 1978;62(3):532–538. https://doi.org/10.1172/JCI109157.
© 1978 The American Society for Clinical Investigation
Published September 1, 1978 - Version history
View PDF
Abstract

The urinary bladder of the fresh-water turtle acidifies its contents by actively transporting H+ ions across the luminal membrane. It is known that the H+ transport system is dependent upon oxidative metabolism and the substrate glucose; however, the specific biochemical events resulting in H+ translocation have not been identified.

This study examines the relationship between active H+ transport and a specific oxidative pathway of glucose metabolism, the pentose phosphate shunt. To investigate this relationship the metabolic and transport rates were simultaneously measured under several well-defined conditions. When H+ transport was inhibited by either the application of an opposing pH gradient or by acetazolamide, glucose metabolism by the pentose phosphate shunt declined. Conversely, stimulation of H+ transport by either imposing a more favorable pH gradient or by CO2 addition resulted in an increase in pentose phosphate shunt metabolism. Glycolytic activity, in contrast, was invariant with the maneuvers which altered the rate of H+ transport. Additional experiments localized pentose phosphate shunt enzyme activity to the mucosal fraction of the bladder which is the cell layer responsible for acid secretion. The finding that the rate of glucose metabolism by the pentose phosphate shunt is related to the rate of H+ transport suggests but does not prove that the pentose phosphate shunt may be an important metabolic pathway for H+ transport by the turtle urinary bladder.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 532
page 532
icon of scanned page 533
page 533
icon of scanned page 534
page 534
icon of scanned page 535
page 535
icon of scanned page 536
page 536
icon of scanned page 537
page 537
icon of scanned page 538
page 538
Version history
  • Version 1 (September 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 1
  • Article usage
  • Citations to this article (10)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

On 1 videos
2 readers on Mendeley
See more details