Advertisement
Research Article Free access | 10.1172/JCI109065
Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901
Find articles by Wisgerhof, M. in: JCI | PubMed | Google Scholar
Endocrine Research Unit, Department of Internal Medicine, Mayo Clinic and Mayo Foundation, Rochester, Minnesota 55901
Find articles by Brown, R. in: JCI | PubMed | Google Scholar
Published June 1, 1978 - More info
Studies were undertaken to determine if the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension is due to altered adrenal responsiveness to angiotensin II. The responsiveness of the adrenal glands to angiotensin II was determined by infusing graded doses of angiotensin II into normal subjects and into patients with essential hypertension and measuring changes in levels of plasma aldosterone in response to the infusion. To minimize the influence of endogenous angiotensin II and ACTH, supplemental sodium and dexamethasone were given before the infusions. Levels of plasma aldosterone and plasma renin activity were determined in normal subjects and in the same patients after the combined stimuli of furosemide and upright posture, a maneuver used to increase the level of endogenous angiotensin II. To determine if the changes in levels of plasma aldosterone during infusion of angiotensin II were due to alteration of the metabolic clearance of aldosterone, the metabolic clearance of aldosterone was measured before and during the infusion of angiotensin II.
After sodium loading, dexamethasone treatment, and supine posture, levels of plasma aldosterone of normal subjects and patients with essential hypertension were suppressed equally. In response to the infusion of angiotensin II, the levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of normal subjects or of patients with normal-renin essential hypertension. After furosemide and upright posture, levels of plasma aldosterone of patients with low-renin essential hypertension were significantly higher than those of patients with normal-renin essential hypertension, despite a blunted response in plasma renin activity of the patients with low-renin essential hypertension. Decreases in metabolic clearance of aldosterone during infusion of angiotensin II were similar in patients with normal-renin essential hypertension and in patients with low-renin essential hypertension and accounted for only a small fraction of the marked increase in levels of plasma aldosterone of patients with low-renin essential hypertension. It is concluded that patients with low-renin essential hypertension have increased adrenal sensitivity to angiotensin II. This increased sensitivity may explain the dissociation of aldosterone and plasma renin activity in low-renin essential hypertension.