Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI109037

Effect of Hypoxia on Myocardial Relaxation in Isometric Cat Papillary Muscle

William H. Frist, Igor Palacios, and Wm. John Powell Jr.

Department of Medicine (Cardiac Unit) of the Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Frist, W. in: PubMed | Google Scholar

Department of Medicine (Cardiac Unit) of the Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Palacios, I. in: PubMed | Google Scholar

Department of Medicine (Cardiac Unit) of the Massachusetts General Hospital, Boston, Massachusetts 02114

Harvard Medical School, Boston, Massachusetts 02114

Find articles by Powell, W. in: PubMed | Google Scholar

Published May 1, 1978 - More info

Published in Volume 61, Issue 5 on May 1, 1978
J Clin Invest. 1978;61(5):1218–1224. https://doi.org/10.1172/JCI109037.
© 1978 The American Society for Clinical Investigation
Published May 1, 1978 - Version history
View PDF
Abstract

Myocardial relaxation is an important energy-dependent process. Hypoxia, unlike ischemia, has not been shown to impair myocardial relaxation. This difference may be because (a) the traditional index to assess isometric muscle relaxation (half time to relaxation or RT½) reflects both changes in developed tension as well as relaxation and (b) the relaxation process is highly sensitive to temperature and previous papillary muscle studies have been conducted under hypothermic conditions. The present study examines the effect of hypoxia on the relaxation process of 31 isometrically contracting kitten papillary muscles at hypothermic (29°C) and euthermic (38°C) conditions using RT½, the peak rate of tension fall (−dT/dt) and −dT/dt normalized for tension ([peak −dT/dt]/T and max [−dT/dt per T]). Hypoxia at 29°C resulted in a fall in RT½ from 278±11 (SEM) to 230±17 ms (P < 0.01) and no change in (peak −dT/dt)/T and max (−dT/dt per T). However, at 38°C, hypoxia impaired relaxation as reflected in a prolongation of RT½ from 101±6 to 126±8 ms (P < 0.01) in spite of a substantial fall in peak tension. Moreover, (peak −dT/dt)/T decreased from −15.4±0.7 to −11.0±0.8/s (P < 0.01) and max (−dT/dt per T) decreased from −25.1±1.8 to −13.8±0.9/s (P < 0.01). In conclusion, the present study demonstrates that hypoxia impairs the relaxation process of cardiac muscle.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1218
page 1218
icon of scanned page 1219
page 1219
icon of scanned page 1220
page 1220
icon of scanned page 1221
page 1221
icon of scanned page 1222
page 1222
icon of scanned page 1223
page 1223
icon of scanned page 1224
page 1224
Version history
  • Version 1 (May 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts