Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (52)

Advertisement

Research Article Free access | 10.1172/JCI109032

The Effects of Ristocetin and von Willebrand Factor on Platelet Electrophoretic Mobility

Barry S. Coller

Division of Hematology, Department of Medicine, Health Sciences Center, State University of New York at Stony Brook, Stony Brook, New York 11794

Find articles by Coller, B. in: PubMed | Google Scholar

Published May 1, 1978 - More info

Published in Volume 61, Issue 5 on May 1, 1978
J Clin Invest. 1978;61(5):1168–1175. https://doi.org/10.1172/JCI109032.
© 1978 The American Society for Clinical Investigation
Published May 1, 1978 - Version history
View PDF
Abstract

Ristocetin will induce the agglutination of platelets in the presence of von Willebrand factor. In previous studies, an electrostatic mechanism was proposed for this phenomenon wherein first the platelet's surface charge is reduced by the binding of ristocetin and then the von Willebrand factor acts as a bridge between platelets. To test this hypothesis, the effects of ristocetin and von Willebrand factor, singly and together, on the electrophoretic mobility of normal, trypsinized, and Bernard-Soulier platelets was measured. Ristocetin alone, at concentrations of 0.5 mg/ml or more, produced a statistically significant reduction in the electrophoretic mobility of fresh or fixed platelets. Control experiments showed that the reduction was not due to changes in the ionic milieu of the solution. Therefore, the decrease in platelet mobility is evidence for binding of ristocetin to the platelet surface. Bernard-Soulier and trypsinized platelets also had reductions in mobility with ristocetin, suggesting that ristocetin binds to the platelet at sites other than the binding site for von Willebrand factor. The presence of plasma from a patient with von Willebrand's disease did not alter the reduction in mobility of normal platelets by ristocetin. However, the reduction was markedly enhanced in the presence of normal plasma. This enhancement did not occur with Bernard-Soulier platelets and was inhibited by anti-Factor VIII/von Willebrand factor antiserum or trypsinization of the platelets. Thus, the enhanced reduction appears to be associated with the binding of von Willebrand factor to the platelet surface. These studies indicate that platelets undergo two changes with ristocetin and von Willebrand factor, both of which facilitate agglutination: reduction in net surface charge and binding of von Willebrand factor, a large molecule which can serve as a bridge between platelets. In parallel studies, bovine von Willebrand factor, without ristocetin, agglutinated and reduced the electrophoretic mobility of normal but not Bernard-Soulier or trypsinized platelets; this indicates a similar mechanism of agglutination.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1168
page 1168
icon of scanned page 1169
page 1169
icon of scanned page 1170
page 1170
icon of scanned page 1171
page 1171
icon of scanned page 1172
page 1172
icon of scanned page 1173
page 1173
icon of scanned page 1174
page 1174
icon of scanned page 1175
page 1175
Version history
  • Version 1 (May 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (52)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts