Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Free access | 10.1172/JCI109008

Superoxide Production by Digitonin-Stimulated Guinea Pig Granulocytes: THE EFFECTS OF N-ETHYL MALEIMIDE, DIVALENT CATIONS, AND GLYCOLYTIC AND MITOCHONDRIAL INHIBITORS ON THE ACTIVATION OF THE SUPEROXIDE GENERATING SYSTEM

Harvey J. Cohen and Margaret E. Chovaniec

Division of Hematology-Oncology, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Cohen, H. in: PubMed | Google Scholar

Division of Hematology-Oncology, Children's Hospital Medical Center, Boston, Massachusetts 02115

Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115

Find articles by Chovaniec, M. in: PubMed | Google Scholar

Published April 1, 1978 - More info

Published in Volume 61, Issue 4 on April 1, 1978
J Clin Invest. 1978;61(4):1088–1096. https://doi.org/10.1172/JCI109008.
© 1978 The American Society for Clinical Investigation
Published April 1, 1978 - Version history
View PDF
Abstract

N-ethylmaleimide, divalent cations, ethylene glycol bis (β aminoethyl ether) N,N,N′,N′,-tetraacetate, 2-deoxyglucose, cyanide, and dinitrophenol were examined for their effect on the ability of guinea pig granulocytes to generate superoxide (O2−) when stimulated by digitonin. N-ethylmaleimide (1 mM) inhibits only when added before complete activation of the O2− generating system, and at lower concentrations (0.05-0.2 mM) slows the activation process. Ca++ is required for maximum O2− generation, and Mg++ decreases the amount of Ca++ required. Ethylene glycol bis (β aminoethyl ether) N,N,N′,N′,-tetraacetate (10 mM) inhibits only if added before complete activation. Incubation of cells in 2-DOG causes a time- and concentration-dependent inhibition of O2− generation. It also increases the time required for activation of this system. Cyanide and dinitrophenol increase the rate of O2− production. However, when these compounds are added to cells whose O2− production is partially inhibited by incubation in 2-deoxyglucose, complete inhibition results. If cyanide or dinitrophenol is added after activation of 2-deoxyglucose-treated cells, no further inhibition occurs. On the basis of the above results, we conclude that the activation of the O2− generating system is N-ethylmaleimide sensitive, Ca++ dependent, and energy requiring, but that the activity of the enzyme system in the cell is not.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1088
page 1088
icon of scanned page 1089
page 1089
icon of scanned page 1090
page 1090
icon of scanned page 1091
page 1091
icon of scanned page 1092
page 1092
icon of scanned page 1093
page 1093
icon of scanned page 1094
page 1094
icon of scanned page 1095
page 1095
icon of scanned page 1096
page 1096
Version history
  • Version 1 (April 1, 1978): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts