Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

The Renal Handling of Parathyroid Hormone: ROLE OF PERITUBULAR UPTAKE AND GLOMERULAR FILTRATION
Kevin J. Martin, … , Charles Anderson, Eduardo Slatopolsky
Kevin J. Martin, … , Charles Anderson, Eduardo Slatopolsky
Published October 1, 1977
Citation Information: J Clin Invest. 1977;60(4):808-814. https://doi.org/10.1172/JCI108834.
View: Text | PDF

The Renal Handling of Parathyroid Hormone: ROLE OF PERITUBULAR UPTAKE AND GLOMERULAR FILTRATION

  • Text
  • PDF
Abstract

The mechanisms of uptake of parathyroid hormone (PTH) by the kidney was studied in anesthetized dogs before and after ureteral ligation. During constant infusion of bovine PTH (b-PTH 1-84), the renal arteriovenous (A-V) difference for immunoreactive PTH (i-PTH) was 22±2%. After ureteral ligation and no change in renal plasma flow, A-V i-PTH fell to 15±1% (P < 0.01), indicating continued and significant uptake of i-PTH at peritubular sites and a lesser role of glomerular filtration (GF) in the renal uptake of i-PTH. Since, under normal conditions, minimal i-PTH appears in the final urine, the contribution of GF and subsequent tubular reabsorption was further examined in isolated perfused dog kidneys before and after inhibition of tubular reabsorption by potassium cyanide. Urinary i-PTH per 100 ml GF rose from 8±4 ng/min (control) to 170±45 ng/min after potassium cyanide. Thus, i-PTH is normally filtered and reabsorbed by the tubular cells. The physiological role of these two mechanisms of renal PTH uptake was examined by giving single injections of b-PTH 1-84 or synthetic b-PTH 1-34 in the presence of established ureteral ligation. After injection of b-PTH 1-84, renal A-V i-PTH was 20% only while biologically active intact PTH was present (15-20 min). No peritubular uptake of carboxyl terminal PTH fragments was demonstrable. In contrast, after injection of synthetic b-PTH 1-34, renal extraction of N-terminal i-PTH after ureteral ligation (which was 13.4±0.6% vs. 19.6±0.9% in controls) continued for as long as i-PTH persisted in the circulation. These studies indicate that both GF and peritubular uptake are important mechanisms for renal PTH uptake. Renal uptake of carboxyl terminal fragments of PTH is dependent exclusively upon GF and tubular reabsorption, whereas peritubular uptake can only be demonstrated for biologically active b-PTH 1-84 and synthetic b-PTH 1-34.

Authors

Kevin J. Martin, Keith A. Hruska, Jane Lewis, Charles Anderson, Eduardo Slatopolsky

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 124 1
PDF 60 8
Scanned page 240 1
Citation downloads 55 0
Totals 479 10
Total Views 489
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts