Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (39)

Advertisement

Free access | 10.1172/JCI108819

Eosinophilopoietin: A CIRCULATING LOW MOLECULAR WEIGHT PEPTIDE-LIKE SUBSTANCE WHICH STIMULATES THE PRODUCTION OF EOSINOPHILS IN MICE

Adel A. F. Mahmoud, Marta K. Stone, and Robert W. Kellermeyer

Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Division of Hematology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

University Hospitals, Cleveland, Ohio 44106

Find articles by Mahmoud, A. in: PubMed | Google Scholar

Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Division of Hematology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

University Hospitals, Cleveland, Ohio 44106

Find articles by Stone, M. in: PubMed | Google Scholar

Division of Geographic Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Division of Hematology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

University Hospitals, Cleveland, Ohio 44106

Find articles by Kellermeyer, R. in: PubMed | Google Scholar

Published September 1, 1977 - More info

Published in Volume 60, Issue 3 on September 1, 1977
J Clin Invest. 1977;60(3):675–682. https://doi.org/10.1172/JCI108819.
© 1977 The American Society for Clinical Investigation
Published September 1, 1977 - Version history
View PDF
Abstract

In earlier studies, methods were developed to raise specific antibodies in rabbits against purified suspensions of mouse or human eosinophils. On administration of antieosinophil serum (AES) to mice, the mature eosinophils in tissues, peripheral blood, and bone marrow were depleted, while the immature eosinophil pool in the bone marrow was observed to proliferate. The current investigations explore the generation of eosinophilopoietic factors during AES-induced eosinophilopenia. Mice received three injections of AES, one every other day. As the peripheral eosinophil counts started to recover after the last AES injection, the serum was collected and transferred to normal animals. Within 2 days the recipients showed an increase in peripheral blood as well as in bone marrow eosinophils. The rise in bone marrow eosinophils was due to newly formed cells as evidenced by increased uptake of [3H]thymidine. The generation of eosinophilopoietic activity was specifically related to depletion of eosinophils but not neutrophils. The eosinophilopoietic activity was: (a) dependent on the volume of serum transferred, (b) lost on dialysis, and (c) largely heat labile. The activity eluted as a low molecular weight substance on G-25 Sephadex and was digested by pronase but not by trypsin. Active fractions collected from G-25 columns were not chemotactic for the eosinophils in vitro. Thus, specific depletion of mature eosinophils generates a low molecular weight peptide which stimulates eosinophilopoiesis in vivo. It is suggested that this substance be named eosinophilopoietin.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 675
page 675
icon of scanned page 676
page 676
icon of scanned page 677
page 677
icon of scanned page 678
page 678
icon of scanned page 679
page 679
icon of scanned page 680
page 680
icon of scanned page 681
page 681
icon of scanned page 682
page 682
Version history
  • Version 1 (September 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (39)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts