Since phenobarbital administration produces a profound increase in bile flow without changing bile acid secretion, we examined whether this drug increases the activity of hepatic sodium-potassium-activated ATPase [Na+-K+)-ATPase], the postulated regulating enzyme in the secretion of bile salt independent bile flow. After freeze-thawing to increase substrate accessibility, (Na+-K+) ATPase activity was determined by ouabain inhibition of total ATPase activity. Its activity was highest in isolated liver surface membrane fractions enriched in bile canalicult. Phenobarbital administration significatly increased (Na+-K+)-ATPase activity in both liver surface membrane fractions as well as liver homogenates. This enhanced activity is apparently selective for other membrane phosphatases and the enzyme activity in other tissues is either unaltered or decreased. Kinetic analysis of (Ka+-K+)-ATPase indicates that phenobarbital treatment increased maximum velocity and half-maximum activation constant was unchanged, consistent with activation of latent molecules or an increased number of enzyme molecules. The latter process seems more likely because cycloheximide prevented phenobarbital induction and activators were not demonstrated in vitro. Examination of the full time course of phenobarbital induction to determine whether phenobarbital increased synthesis or decreased degradation was consistent with increased synthesis since the apparent degradation rates were similar with or without phenobarbital treatment. The apparent half-life for (Na+-K+)-ATPase was estimated to be approximately 2.5 days, consistent with liver surface membrane protein turnover. The correlation of changes in bile flow with (Na+-K+)-ATPase was examined under several experimental situations. Phenobarbital caused a parallel increase in each during the 1st 2 days of greatment: thereafter other factors become rate limiting for flow, since enzyme activity doesn't reach a new steady state until 4-days. Consistent with increased sodium-potassium exchange, bile sodium was unchanged while potasium concentrations were significantly reduced. Changes in both bile flow and (Na+-K+)-ATPase induced by phenobarbital are independent of thyroid hormone. These studies support the postulate that (Na+-K+)-ATPase is an important factor in regulation of bile flow. In addition, phenobarbital enhancement of both bile flow and (Na+-K+)-ATPase is dependent upon de novo protein synthesis.
F R Simon, E Sutherland, L Accatino
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 130 | 1 |
55 | 14 | |
Scanned page | 495 | 9 |
Citation downloads | 48 | 0 |
Totals | 728 | 24 |
Total Views | 752 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.