Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 1

See more details

Posted by 1 X users
  • Article usage
  • Citations to this article (29)

Advertisement

Research Article Free access | 10.1172/JCI108686

Mechanism of resistance to the phosphaturic effect of the parathyroid hormone in the hamster.

F G Knox, J Preiss, J K Kim, and T P Dousa

Find articles by Knox, F. in: PubMed | Google Scholar

Find articles by Preiss, J. in: PubMed | Google Scholar

Find articles by Kim, J. in: PubMed | Google Scholar

Find articles by Dousa, T. in: PubMed | Google Scholar

Published April 1, 1977 - More info

Published in Volume 59, Issue 4 on April 1, 1977
J Clin Invest. 1977;59(4):675–683. https://doi.org/10.1172/JCI108686.
© 1977 The American Society for Clinical Investigation
Published April 1, 1977 - Version history
View PDF
Abstract

The effect of parathyroid hormone and calcitonin on the renal excretion of phosphate, calcium, and cyclic AMP was evaluated in the thyroparathyroidectomized hamster, a mammal apparently reisstant to the phosphaturic effect of parathyroid hormone. Parathyroid hormone did not increase phosphate excretion, although it decreased excretion of calcium and increased urinary excretion of cyclic AMP. This lack of a phosphaturic response to parathyroid hormone was not reversed by administration of 25-OH vitamin D or infusions of calcium or phosphate. Calcitonin, another potentially phosphaturic hormone, also vailed to increase phosphate excretion but markedly elevated urinary excretion of cyclic AMP. In hamsters pretreated with infusion of urinary ammonium chloride, which decreased plasma and urinary pH, both parathyroid hormone and calcitonin increased excretion of phosphate as well as that of cyclic AMP. Acetazolamide had no phosphaturic effect in ammonium chloride-loaded hamsters, and it decreased cyclic AMP and calcium excretion. Alkalinization of urine by acetazolamide did not prevent the phosphaturic effect of parathyroid hormone in ammonium chloride-loaded hamsters, but it blocked the increase in urinary cyclic AMP excretion. Parathyroid hormone and calcitonin both stimulated adenylate cyclase in a cell-free system (600-g pellet) from hamster renal cortex, elevated tissue cyclic AMP levels, and activated protein kinase in tissue slices from hamster renal cortex. In acid medium, the increase in cyclic AMP and activation of protein kinase in response to parathyroid hormone was diminished, but addition of acetazolamide restored responsiveness of both parameters to control values. Acetazolamide, on the other hand, did not influence adenylate cyclase or its response to parathyroid hormone or cyclic AMP phosphodiesterase activity. We conclude that the lack of a phosphaturic effect of parathyroid hormone and calcitonin in the hamster depends on steps in the cellular action of these hormones, steps that are sensitive to pH subsequent to cyclic AMP generation and protein kinase activation. In addition, acetazolamide may potentiate the phosphaturic effect of parathyroid hormone by promoting accumulation of cyclic AMP in tissue. Thus, the hamster is a particularly useful model for studies of syndromes in which there is renal resistance to phosphaturic hormones.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 675
page 675
icon of scanned page 676
page 676
icon of scanned page 677
page 677
icon of scanned page 678
page 678
icon of scanned page 679
page 679
icon of scanned page 680
page 680
icon of scanned page 681
page 681
icon of scanned page 682
page 682
icon of scanned page 683
page 683
Version history
  • Version 1 (April 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 1
  • Article usage
  • Citations to this article (29)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Posted by 1 X users
See more details