Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2.
L M Simon, … , S G Axline, J Theodore
L M Simon, … , S G Axline, J Theodore
Published March 1, 1977
Citation Information: J Clin Invest. 1977;59(3):443-448. https://doi.org/10.1172/JCI108658.
View: Text | PDF
Research Article

Enzymatic basis for bioenergetic differences of alveolar versus peritoneal macrophages and enzyme regulation by molecular O2.

  • Text
  • PDF
Abstract

Alveolar macrophages (AM) and peritoneal macrophages (PM) originate from common precursor cells, but function in different O2 environments. In the present studies, the impact of different O2 tensions on cell metabolism has been quantitatively determined, an enzymatic basis for these differences established, and a mechanism which regulates enzymatic differences demonstrated. O2 consumption and lactate production were compared in rabbit AM and PM in air and nitrogen. In air, AM demonstrate significantly greater O2 utilization. In nitrogen, (where glycolysis is the major source of energy provision) lactate production is two- to threefold greater in the PM. A comparison of several enzymes of energy metabolism in AM and PM indicate that one basis for the differences in cell energetics is a difference in activity of key enzymes of both the oxidative phosphorlyative and the glycolytic sequences. Exposure of cultivated AM to hypoxic conditions results in changes in the activity of these enzymes such that the AM closely resembles the PM. A key enzyme in oxidative phosphorylation (cytochrome oxidase) shows decreased activity and reaches values similar to those found in the PM. A key enzyme in glycolysis (pyruvate kinase) shows increased activity to values resembling those found in the PM. These alterations in enzyme pattern occur in isolated cell systems, suggesting that molecular O2 modifies the intrinsic cellular regulation of some enzymes of energy metabolism. Alterations in O2 tension may lead to alterations of the rate of biosynthesis and (or) the rate of biodegradation of key enzymes involved in oxidative phosphorylation and glycolysis. In turn, the alteration of enzyme patterns leads to a more suitable bioenergetic pattern as a function of O2 availability.

Authors

L M Simon, E D Robin, J R Phillips, J Acevedo, S G Axline, J Theodore

×

Usage data is cumulative from June 2024 through June 2025.

Usage JCI PMC
Text version 163 4
PDF 41 12
Scanned page 202 1
Citation downloads 53 0
Totals 459 17
Total Views 476
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts