Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108641

Influence of somatostatin on splanchnic glucose metabolism in postabsorptive and 60-hour fasted humans.

J Wahren, S Efendić, R Luft, L Hagenfeldt, O Björkman, and P Felig

Find articles by Wahren, J. in: PubMed | Google Scholar

Find articles by Efendić, S. in: PubMed | Google Scholar

Find articles by Luft, R. in: PubMed | Google Scholar

Find articles by Hagenfeldt, L. in: PubMed | Google Scholar

Find articles by Björkman, O. in: PubMed | Google Scholar

Find articles by Felig, P. in: PubMed | Google Scholar

Published February 1, 1977 - More info

Published in Volume 59, Issue 2 on February 1, 1977
J Clin Invest. 1977;59(2):299–307. https://doi.org/10.1172/JCI108641.
© 1977 The American Society for Clinical Investigation
Published February 1, 1977 - Version history
View PDF
Abstract

Cyclic somatostatin was administered intravenously (10 mug/min for 60 min) to 10 healthy overnight fasted (postabsorptive) subjects and to 5 healthy 60-h fasted subjects. In both groups, arterial insulin and glucagon fell 50% and splanchnic release of these hormones was inhibited. In the overnight fasted subjects splanchnic glucose output fell 70%, splanchnic uptake of lactate and pyruvate was unchanged, alanine uptake fell by 25%, and glycerol uptake rose more than twofold in parallel with an increase in arterial glycerol. In the 60-h fasted group splanchnic glucose output was less than 40% of that observed in the overnight fasted subjects. Somatostatin led to a further decrease (--70%) in glucose production. Splanchnic uptake of lactate and pyruvate fell by 30-40%, amino acid uptake was unchanged, while uptake of glycerol rose fivefold. Total uptake of glucose precursors thus exceeded the simultaneous glucose output by more than 200%. Splanchnic uptake of FFA rose fourfold during somatostatin while output of beta-hydroxybutyrate increased by 75%. Estimated hepatic blood flow fell 25-35% and returned to base line as soon as the somatostatin infusion ended. It is concluded that (a) somatostatin-induced hypoglucagonemia results in inhibition of splanchnic glucose output in glycogen-depleted, 60-h fasted subjects as well as in postabsorptive subjects, indicating an effect of glucagon on hepatic gluconeogenesis as well as glycogenolysis; (b) the glucagonsensitive step(s) in gluconeogenesis affected by somatostatin involves primarily intra-hepatic disposal rather than net hepatic uptake of glucose precursors; (c) splanchnic uptake of fatty acids and ketone output are increased in the face of combined insulin and glucagon deficiency; and (d) diminished splanchnic blood flow may contribute to some of the effects of somatostatin on splanchnic metabolism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 299
page 299
icon of scanned page 300
page 300
icon of scanned page 301
page 301
icon of scanned page 302
page 302
icon of scanned page 303
page 303
icon of scanned page 304
page 304
icon of scanned page 305
page 305
icon of scanned page 306
page 306
icon of scanned page 307
page 307
Version history
  • Version 1 (February 1, 1977): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts