The atherogenic mechanism of homocystinemia has been defined by measuring endothelial cell loss and regeneration, platelet consumption, and intimal lesion formation in a primate model. Three groups of baboons were studied: (a) 8 control animals; (b) 15 animals after 3 mo of continuous homocystinemia; and (c) 11 animals after 3 mo of combined homocystinemia and oral treatment with dipyridamole. Experimental homocystinemia caused patchy endothelial desquamation comprising about 10% of the aortic surface despite a 25-fold increase in endothelial cell regeneration. Neither endothelial cell loss nor regeneration was changed significantly by dipyridamole. Homocystine-induced vascular deendothelialization produced a threefold increase in platelet consumption that was interrupted by dipyridamole inhibition of platelet function. All homocystinemic animals developed typical arteriosclerotic or preatherosclerotic intimal lesions composed of proliferating smooth muscle cells averaging 10-15 cell layers surrounded by large amounts of collagen, elastic fibers, glycosaminoglycans, and sometimes lipid. Intimal lesion formation was prevented by dipyridamole therapy. We conclude that homocystine-induced endothelial cell injury resulted in arteriosclerosis through platelet-mediated intimal proliferation of smooth muscle cells that can be prevented by drug-induced platelet dysfunction.
L A Harker, R Ross, S J Slichter, C R Scott
Usage data is cumulative from May 2024 through May 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 350 | 8 |
51 | 20 | |
Figure | 0 | 2 |
Scanned page | 522 | 11 |
Citation downloads | 61 | 0 |
Totals | 984 | 41 |
Total Views | 1,025 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.