Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 3

See more details

Referenced in 1 Wikipedia pages
4 readers on Mendeley
  • Article usage
  • Citations to this article (64)

Advertisement

Research Article Free access | 10.1172/JCI108507

Urea secretion by the straight segment of the proximal tubule.

S Kawamura and J P Kokko

Find articles by Kawamura, S. in: JCI | PubMed | Google Scholar

Find articles by Kokko, J. in: JCI | PubMed | Google Scholar

Published September 1, 1976 - More info

Published in Volume 58, Issue 3 on September 1, 1976
J Clin Invest. 1976;58(3):604–612. https://doi.org/10.1172/JCI108507.
© 1976 The American Society for Clinical Investigation
Published September 1, 1976 - Version history
View PDF
Abstract

Studies utilizing in vitro microperfusion were designed to examine whether urea is actively or passively transported across superficial and juxtamedullary straight segments of rabbit proximal tubules. With perfusate and bath solutions containing 1 mM urea and electrolytes similar to normal plasma, the efflux (lumen-to-bath) isotopic permeability (X 10(-5) cm s-1) of superficial segments was 1.37 +/- 0.16 and of juxtamedullary segments was 2.14 +/- 0.20. In the same tubules, the influx (bath-to-lumen) isotopic permeability was 3.70 +/- 0.35 in superficial segments and 4.75 +/- 0.37 in juxtamedullary segments. Despite net water movement in the opposite direction (0.5 nl mm-1 min-1), the influx rate was significantly higher than the efflux rate of urea in both groups. With a low perfusion rate (2 nl/min) and equivalent specific activities of [14C]urea in bath and perfusate, the collected-to-perfused ratio of [14C]urea, corrected for volume marker change, was 1.07 +/- 0.01 in superficial and 1.09 +/- 0.01 in juxtamedullary nephrons, thus indicating net secretion in both segments. In separate studies urea influx was inhibited by hypothermia (decrease from 37 degrees to 28 degrees C), by phloretin (0.1 mM in bath), by cyanide (1 mM), but not by probenecid (0.2 mM). In each case the inhibition was highly significant and reversible. These data suggest that urea is actively secreted by the straight segments of both the superficial and juxtamedullary proximal tubules. These segments may, therefore, contribute significantly to the high urea concentration found at the bend of Henle's loop by micropuncture.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 604
page 604
icon of scanned page 605
page 605
icon of scanned page 606
page 606
icon of scanned page 607
page 607
icon of scanned page 608
page 608
icon of scanned page 609
page 609
icon of scanned page 610
page 610
icon of scanned page 611
page 611
icon of scanned page 612
page 612
Version history
  • Version 1 (September 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 3
  • Article usage
  • Citations to this article (64)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Referenced in 1 Wikipedia pages
4 readers on Mendeley
See more details