Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (254)

Advertisement

Research Article Free access | 10.1172/JCI108497

Direct stimulation of bone resorption by thyroid hormones.

G R Mundy, J L Shapiro, J G Bandelin, E M Canalis, and L G Raisz

Find articles by Mundy, G. in: PubMed | Google Scholar

Find articles by Shapiro, J. in: PubMed | Google Scholar

Find articles by Bandelin, J. in: PubMed | Google Scholar

Find articles by Canalis, E. in: PubMed | Google Scholar

Find articles by Raisz, L. in: PubMed | Google Scholar

Published September 1, 1976 - More info

Published in Volume 58, Issue 3 on September 1, 1976
J Clin Invest. 1976;58(3):529–534. https://doi.org/10.1172/JCI108497.
© 1976 The American Society for Clinical Investigation
Published September 1, 1976 - Version history
View PDF
Abstract

Although hypercalcemia, osteoporosis, and increased bone turnover are associated with thyrotoxicosis, no direct effects of thyroid hormones on bone metabolism have been reported previously in organ culture. We have now demonstrated that prolonged treatment with thyroxine (T4) or triiodothyronine (T3) can directly increase bone resorption in cultured fetal rat long bones as measured by the release of previously incorporated 45Ca. T4 and T3 at 1 muM to 10 nM increased 45Ca release by 10-60% of total bone 45Ca during 5 days of culture. The medium contained 4 mg/ml of bovine serum albumin to which 90% of T4 and T3 were bound, so that free concentrations were less than 0.1 muM. The response to T4 and T3 was inhibited by cortisol (1 muM) and calcitonin (100 mU/ml). Indomethacin did not inhibit T4 response suggesting that T4 stimulation of bone resorption was not mediated by increased prostaglandin synthesis by the cultured bone. Matrix resorption was demonstrated by a decrease in extracted dry weight and hydroxyproline concentration of treated bones and by histologic examination which also showed increased osteoclast activity. The effects of thyroid hormones were not only slower than those of other potent stimulators of osteoclastic bone resorption (parathyroid hormone, vitamin D metabolites, osteoclast activating factor, and prostaglandins), but the maximum response was not as great. We conclude that T4 and T3 can directly stimulate bone resorption in vitro at concentrations approaching those which occur in thyrotoxicosis. This effect may explain the disturbances of calcium metabolism seen in hyperthyroidism.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 529
page 529
icon of scanned page 530
page 530
icon of scanned page 531
page 531
icon of scanned page 532
page 532
icon of scanned page 533
page 533
icon of scanned page 534
page 534
Version history
  • Version 1 (September 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (254)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts