This study reports the isolation and partial characterization of vitamin D and 25-hydroxyvitamin D binding protein (DBP), the specific transport protein for vitamin D and its 25-hydroxy metabolite in human plasma. DBP was labeled by the addition of a tracer amount of 3H-labeled 25-OH-D3 to the original plasma used for protein fractionation. Previous experiments have shown that such 25-OH-D3 added in vitro binds to the same protein normally responsible for the transport of endogenous 25-OH-D and of vitamin D. The isolation of human DBP was achieved by an extensive sequence of procedures which resulted in a final yield of only approximately 4 mg of purified DBP from a starting volume of 34 liters of plasma. Purified DBP was homogeneous in the analytical ultracentrifuge and showed a single band of protein on analytical polyacrylamide gel electrophoresis. DBP had a sedimentation constant of 3.49s and a mol wt of approximately 52,000. The molecular weight was assessed by sedimentation equilibrium analysis and also by sodium dodecyl sulfate-disc-gel electrophoresis and by gel filtration on a standardized column of Sephadex G-150. The amino acid composition of DBP was determined and was generally consistent with the estimated extinction coefficient (E1cm1% at 280 nm) of about 9.1. The isoelectric point of DBP was estimated as 4.8 from isoelectric focusing experiments. Direct study of the binding capacity of the purified DBP for added 25-OH-D3 showed that the isolated DBP had a high affinity for 25-OH-D3, with an apparent maximum binding capacity of one molecule of 25-OH-D3 per molecule of protein.
M Imawari, K Kida, D S Goodman
514 | 515 | 516 | 517 | 518 | 519 | 520 | 521 | 522 | 523 |