Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

Phosphaturic effect of dopamine in dogs. Possible role of intrarenally produced dopamine in phosphate regulation.
J L Cuche, … , R C Lang, F G Knox
J L Cuche, … , R C Lang, F G Knox
Published July 1, 1976
Citation Information: J Clin Invest. 1976;58(1):71-76. https://doi.org/10.1172/JCI108461.
View: Text | PDF
Research Article

Phosphaturic effect of dopamine in dogs. Possible role of intrarenally produced dopamine in phosphate regulation.

  • Text
  • PDF
Abstract

A possible role for dopamine in phosphate handling by the dog kidney was investigated by intrarenal artery infusions of dopamine. Dopamine increased fractional phosphate excretion both in the presence and absence of control of parathyroid hormone and calcitonin. In addition, dopamine increased both renal blood flow and sodium excretion, however, the phosphaturia was independent of these changes; since 30 min after completion of dopamine infusion, renal blood flow and sodium excretion returned to control levels and phosphate excretion remained elevated. For comparison, the vasodilator isoproterenol increased renal blood flow and sodium excretion without a significant change in fractional phosphate excretion. Thus, the phosphaturic effect of dopamine is probably independent of its vasodilator effect. The phosphaturic effect of dopamine could not be accounted for by subsequent conversion to norepinephrine, since norepinephrine was antiphosphaturic in the dog. The effect of endogenous dopamine on renal phosphate excretion was investigated by intrarenal infusion of the precursor dopa. Dopa was phosphaturic both in the presence and absence of parathyroid hormone and calcitonin. In dogs pretreated with carbidopa, which blocks conversion of dopa to dopamine, dopa was no longer phosphaturic, although the kidney remained responsive to dopamine. It is postulated that dopamine may play a role in the intrarenal regulation of phosphate excretion.

Authors

J L Cuche, G R Marchand, R F Greger, R C Lang, F G Knox

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 114 0
PDF 49 10
Scanned page 223 1
Citation downloads 57 0
Totals 443 11
Total Views 454
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts