Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Usage Information

A comparative analysis of the C1-binding ability of fragments derived from complement-fixing and noncomplement-fixing IgM proteins.
M M Hurst, … , R M Stroud, J C Bennett
M M Hurst, … , R M Stroud, J C Bennett
Published July 1, 1976
Citation Information: J Clin Invest. 1976;58(1):16-21. https://doi.org/10.1172/JCI108445.
View: Text | PDF
Research Article

A comparative analysis of the C1-binding ability of fragments derived from complement-fixing and noncomplement-fixing IgM proteins.

  • Text
  • PDF
Abstract

The purpose of this study was to examine the molecular parameters necessary for initiation of complement fixation by IgM proteins. To determine why some IgM molecules are capable of complement fixation while others are not, several different Waldenström IgM proteins were examined for their ability to fix total hemolytic complement in the CH(50) assay. Subsequently, the C1 fixing ability of a 56-residue fragment derived from the Cmu4 domain of each of these IgM molecules was studied with C1 fixation assay. One of the three Waldenström IgM proteins (Gr) used in the present study was found unable to consume complement in a CH(50) assay when tested at the same concentration as the two complement-consuming IgM molecules (Dau and Bus). However, when the 56-residue C(H)4 fragment from the Cmu4 domain of each IgM molecule was tested for C1-fixing ability, all three were found to bind C1. On the basis of these observations, it is proposed that a C1 binding site exists within the Cmu4 domain of both complement-fixing and noncomplement-fixing IgM molecules. Presumably, the latter molecules are unable to interact in their native state with C1 in the manner required for initiation of the classical complement pathway, possibly due to the configurational inaccessibility of the entire C1 binding site.

Authors

M M Hurst, J E Volanakis, R M Stroud, J C Bennett

×

Usage data is cumulative from May 2024 through May 2025.

Usage JCI PMC
Text version 86 1
PDF 48 8
Scanned page 228 1
Citation downloads 59 0
Totals 421 10
Total Views 431
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts