Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
Article has an altmetric score of 19

See more details

Picked up by 1 news outlets
Referenced in 1 policy sources
Referenced in 5 patents
Referenced in 1 Wikipedia pages
Referenced in 1 clinical guideline sources
115 readers on Mendeley
  • Article usage
  • Citations to this article (419)

Advertisement

Research Article Free access | 10.1172/JCI108436

The biosynthesis of human hemoglobin A1c. Slow glycosylation of hemoglobin in vivo.

H F Bunn, D N Haney, S Kamin, K H Gabbay, and P M Gallop

Find articles by Bunn, H. in: PubMed | Google Scholar

Find articles by Haney, D. in: PubMed | Google Scholar

Find articles by Kamin, S. in: PubMed | Google Scholar

Find articles by Gabbay, K. in: PubMed | Google Scholar

Find articles by Gallop, P. in: PubMed | Google Scholar

Published June 1, 1976 - More info

Published in Volume 57, Issue 6 on June 1, 1976
J Clin Invest. 1976;57(6):1652–1659. https://doi.org/10.1172/JCI108436.
© 1976 The American Society for Clinical Investigation
Published June 1, 1976 - Version history
View PDF
Abstract

Hemoglobin A1c, the most abundant minor hemoglobin component in human erythrocytes, is formed by the condensation of glucose with the N-terminal amino groups of the beta-chains of Hb A. The biosynthesis of this glycosylated hemoglobin was studied in vitro by incubating suspensions of reticulocytes and bone marrow cells with [3H]leucine or 59Fe-bound transferrin. In all experiments, the specific activity of Hb A1c was significantly lower than that of Hb A, suggesting that the formation of Hb A1c is a posttranslational modification. The formation of Hb A1c in vivo was determined in two individuals who were given an infusion of 59Fe-labeled transferrin. As expected, the specific activity of Hb A rose promptly to a maximum during the 1st week and remained nearly constant thereafter. In contrast, the specific activity of Hb A1c and also of Hbs A1a and A1b rose slowly, reaching that of Hb A by about day 60. These results indicate that Hb A1c is slowly formed during the 120-day life-span of the erythrocyte, probably by a nonenzymatic process. Patients with shortened erythrocyte life-span due to hemolysis had markedly decreased levels of Hb A1c.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1652
page 1652
icon of scanned page 1653
page 1653
icon of scanned page 1654
page 1654
icon of scanned page 1655
page 1655
icon of scanned page 1656
page 1656
icon of scanned page 1657
page 1657
icon of scanned page 1658
page 1658
icon of scanned page 1659
page 1659
Version history
  • Version 1 (June 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

Article has an altmetric score of 19
  • Article usage
  • Citations to this article (419)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts

Picked up by 1 news outlets
Referenced in 1 policy sources
Referenced in 5 patents
Referenced in 1 Wikipedia pages
Referenced in 1 clinical guideline sources
115 readers on Mendeley
See more details