Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108424

Comparison of effects of 1 alpha-hydroxy-vitamin D3 and 1,25-dihydroxy-vitamin D3 in man.

A S Brickman, J W Coburn, G R Friedman, W H Okamura, S G Massry, and A W Norman

Find articles by Brickman, A. in: PubMed | Google Scholar

Find articles by Coburn, J. in: PubMed | Google Scholar

Find articles by Friedman, G. in: PubMed | Google Scholar

Find articles by Okamura, W. in: PubMed | Google Scholar

Find articles by Massry, S. in: PubMed | Google Scholar

Find articles by Norman, A. in: PubMed | Google Scholar

Published June 1, 1976 - More info

Published in Volume 57, Issue 6 on June 1, 1976
J Clin Invest. 1976;57(6):1540–1547. https://doi.org/10.1172/JCI108424.
© 1976 The American Society for Clinical Investigation
Published June 1, 1976 - Version history
View PDF
Abstract

The effects of short-term treatment with 1,25-dihydroxy-vitamin D3 [1,25(0H)2D3] or 1 alpha-hydroxy-vitamin D3 [1 alpha(OH)D3] on intestinal absorption of 47Ca were compared in 41 experiments in normals and 72 experiments in patients with chronic renal failure. 11 patients were studied a second time after treatment for 2-5 mo. Doses varied from 0.14 to 5.4 mug/day to establish dose-response relationships. Urinary calcium was monitored in normal subjects, nine of whom received a constant calcium intake on a metabolic unit. There was an increase in intestinal absorption of 47Ca and urinary calcium in normals receiving 1,25 (OH)2D3, 0.14 mug/day or greater, and 0.28 mug/day or greater augmented intestinal absorption of 47Ca in chronic renal failure. In contrast, 2.6 mug/day of 1 alpha (OH) D3 was required to increase intestinal absorption of 47Ca in both groups. The increase in urinary calcium to maximal levels was delayed during treatment with 1 alpha (OH) D3, 5-10 days vs. 2-5 days with 1,25 (OH)2D3. Moreover, half times for urinary calcium to decrease to pretreatment levels after stopping treatment were greater after 1 alpha-(OH) D3 (1.5-2.7 days) than 1,25(OH)2D3 (1.1-2.0 days). With long-term administration there was a progressive increase in intestinal absorption of 47Ca in the patients receiving 1 alpha (OH)D3; this was not observed with 1,25(OH)2D3. The pharmacologic differences between 1 alpha(OH) D3 and 1,25(OH)2D3 may be explained by the requirement for 25-hydroxylation of 1alpha(OH) D3 before biologic effects occur; at low doses (less than 1 mug/day), 1 alpha(OH) D3 competes with vitamin D3 for 25-hydroxylation. With prolonged treatment or larger doses (greater than 2 mug/day),, 1alpha(OH) D3 could accumulate and then be hydroxylated resulting in production of higher levels of 1,25(OH)2D3.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1540
page 1540
icon of scanned page 1541
page 1541
icon of scanned page 1542
page 1542
icon of scanned page 1543
page 1543
icon of scanned page 1544
page 1544
icon of scanned page 1545
page 1545
icon of scanned page 1546
page 1546
icon of scanned page 1547
page 1547
Version history
  • Version 1 (June 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts