Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (23)

Advertisement

Research Article Free access | 10.1172/JCI108414

Hormonal modulation of cyclic adenosine 3',5'-monophosphate-dependent protein kinase activity in rat renal cortex. Specificity of enzyme translocation.

F R DeRubertis and P A Craven

Find articles by DeRubertis, F. in: PubMed | Google Scholar

Find articles by Craven, P. in: PubMed | Google Scholar

Published June 1, 1976 - More info

Published in Volume 57, Issue 6 on June 1, 1976
J Clin Invest. 1976;57(6):1442–1450. https://doi.org/10.1172/JCI108414.
© 1976 The American Society for Clinical Investigation
Published June 1, 1976 - Version history
View PDF
Abstract

Many of the intracellular actions of cyclic adenosine 3',5'-monophosphate are expressed through phosphorylation reactions mediated by cAMP-dependent protein kinases, but little is known about hormonal control of endogenous protein kinase activity (PK) in kidney. In the present study, we examined the effects of parathyroid hormone, glucagon, and isoproterenol on cAMP and PK in slices of rat renal cortex. In the presence of 0.5 mM 1-methyl, 3-isobutyl xanthine, all three hormones activated PK in slices, as reflected by an increase in the ratio of enzyme activity assayable in homogenates of the slices without addition of cAMP to the kinase reaction mixture (cAMP-independent activity) over total enzyme activity (+2 uM cAMP in the reaction mixture). When enzyme activity was assayed in whole homogenates prepared from slices, the increase in the enzyme activity ratio (- cAMP/+cAMP) which followed hormonal stimulation was due entirely to an increase in cAMP-independent activity, with no change in total activity. In general, a good correlation existed between the alterations in tissue cAMP levels mediated by the hormones and/or 1-methyl, 3-isobutyl xanthine and concomitant alterations in PK. All three hormones increased PK activity ratios to near unity, suggesting complete enzyme activation. However, the concentrations of parathyroid hormone and glucagon which produced maximal activation of PK were much lower than those required for maximal cAMP responses. Studies with charcoal indicated that these hormonal actions on PK reflected intracellular events rather than representing activation of the enzyme during tissue homogenization, due to release of sequestered cAMP. Thus, homogenization of tissue in charcoal prevented activation of PK by subsequent addition of exogenous cAMP, but did not lower enzyme activity ratios in homogenates of hormone-stimulated cortical slices. When PK was determined in the 20,000 g supernatant fraction of renal cortical slices incubated with the hormones, enzyme activity ratios also increased, but total enzyme activity declined. Lost activity was recovered by extraction of particulate fractions with 500 mM KCl or NaCl, results which implied particulate binding of activated PK. Activated soluble PK from renal cortex was bound equally well by intact, heat- and trypsin-treated renal cortical pellets and by intact and heated hepatic pellets. Accordingly, the apparent translocation of enzyme in hormone stimulated cortex does not necessarily represent binding of the activated PK to specific acceptor sites in the particulate cell fractions or constitute a physiologic hormonal action. Activation of renal cortical PK by increasing concentrations of salts suggests that the enzyme in this tissue resembles the predominant type found in heart.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1442
page 1442
icon of scanned page 1443
page 1443
icon of scanned page 1444
page 1444
icon of scanned page 1445
page 1445
icon of scanned page 1446
page 1446
icon of scanned page 1447
page 1447
icon of scanned page 1448
page 1448
icon of scanned page 1449
page 1449
icon of scanned page 1450
page 1450
Version history
  • Version 1 (June 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (23)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts