Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article (65)

Advertisement

Research Article Free access | 10.1172/JCI108373

Interactions of actin, myosin, and an actin-binding protein of chronic myelogenous leukemia leukocytes.

L A Boxer and T P Stossel

Find articles by Boxer, L. in: PubMed | Google Scholar

Find articles by Stossel, T. in: PubMed | Google Scholar

Published April 1, 1976 - More info

Published in Volume 57, Issue 4 on April 1, 1976
J Clin Invest. 1976;57(4):964–976. https://doi.org/10.1172/JCI108373.
© 1976 The American Society for Clinical Investigation
Published April 1, 1976 - Version history
View PDF
Abstract

Actin, myosin, and a high molecular weight actin-binding protein were purified from chronic myelogenous leukemia (CML) leukocytes. CML leukocyte actin resembled skeletal muscle and other cytoplasmic actins by its subunit molecular weight, by its ability to polymerize in the presence of salts, and to activate the Mg2+-ATPase activity of rabbit skeletal muscle myosin. CML leukocyte myosin was similar to other vertebrate cytoplasmic myosins in having heavy chains and two light subunits. However, its apparent heavy-chain molecular weight and Stokes radius suggested that it was variably degraded during purification. Purified CML leukocyte myosin had average specific EDTA- AND Ca2+-activated ATPase activities of 125 and 151 nmol Pi released/mg protein per min, respectively and low specific Mg2+-ATPase activity. The Mg2+-ATPase activity of CML myosin was increased 200-fold by rabbit skeletal muscle F-actin, but the specific activity relative to that of actin-activated rabbit skeletal muscle myosin was low. CML leukocyte myosin, like other vertebrate cytoplasmic myosins, formed filaments in 0.1 M KCl solutions. Reduced and denatured CML leukocyte-actin-binding protein had a single high molecular weight subunit like a recently described actin-binding protein of rabbit pulmonary macrophages which promotes the polymerization and gelation of actin. Cytoplasmic extracts of CML leukocytes prepared with ice-cold 0.34-M sucrose solutions containing Mg2+-ATP, dithiothreitol, and EDTA at pH 7.0 underwent rapid gelation when warmed to 25 degrees C. Initially, the gel could be liquified by cooling to ice-bath temperature. With time, warmed cytoplasmic extract gels shrunk ("contracted") into aggregates. The following findings indicated that CML leukocyte actin-binding protein promoted the temperature-dependent gelation of actin in the cytoplasmic extracts and that CML leukocyte myosin was involved in the contraction of the actin gels: (a) Cytoplasmic extract gels initially contained actin as their major polypeptide component and consistent of tangled thin filaments; (b) Contracted aggregates of cytoplasmic extract gels contained by large quantities of myosin as well as actin; (c) Purified actin-binding protein underwent a temperature-dependent, reversible aggregation and caused low concentrations of purified muscle or CML leukocyte actins to gel in sucrose solutions; (d) The gels formed from purified actin plus purified actin-binding protein slowly contracted in the presence but not in the absence of purified CML leukocyte myosin; (e) Rabbit antiserum against purified CML leukocyte actin-binding protein but not against purified CML leukocyte myosin inhibited the gelation of warmed CML leukocyte extracts. Antiserum against CML leukocyte myosin had no effect on the gelation of CML leukocyte extracts but partially curtailed the contraction of the CML leukocyte extract gels and of gels formed from purified CML leukocyte actin-binding protein plus rabbit skeletal muscle actin.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 964
page 964
icon of scanned page 965
page 965
icon of scanned page 966
page 966
icon of scanned page 967
page 967
icon of scanned page 968
page 968
icon of scanned page 969
page 969
icon of scanned page 970
page 970
icon of scanned page 971
page 971
icon of scanned page 972
page 972
icon of scanned page 973
page 973
icon of scanned page 974
page 974
icon of scanned page 975
page 975
icon of scanned page 976
page 976
Version history
  • Version 1 (April 1, 1976): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article (65)

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts