Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI108172

Thrombin-induced protein phosphorylation in human platelets.

R M Lyons, N Stanford, and P W Majerus

Find articles by Lyons, R. in: JCI | PubMed | Google Scholar

Find articles by Stanford, N. in: JCI | PubMed | Google Scholar

Find articles by Majerus, P. in: JCI | PubMed | Google Scholar

Published October 1, 1975 - More info

Published in Volume 56, Issue 4 on October 1, 1975
J Clin Invest. 1975;56(4):924–936. https://doi.org/10.1172/JCI108172.
© 1975 The American Society for Clinical Investigation
Published October 1, 1975 - Version history
View PDF
Abstract

Intact human platelets loaded with 32PO4 contain multiple phosphorylated proteins. Thrombin treatment of intact 32PO4-loaded platelets results in a 2-6-fold increase in phosphorylation of a platelet protein (designated "peak 7" protein) of approximately 40,000 mol wt as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by gel filtration on Sephadex G-150. A similar increase in phosphorylation was observed in a platelet protein (designated "peak 9" protein) of approximately 20,000 mol wt. The time for half-maximal phosphorylation of peak 7 and peak 9 protein was 10-14 s. The concentration of thrombin at half-maximal phosphorylation was 0.25 U/ml for both proteins. Prior incubation of platelets with dibutyryl cyclic adenosine 3',5'-monophosphate or prostaglandin E1 inhibited thrombin-induced peak 7 and peak 9 protein phosphorylation. The erythroagglutinating phytohemagglutinin of Phaseolus vulgaris, a non-proteolytic release-inducing agent, induced peak 7 and peak 9 protein phosphorylation. Thus, the characteristics of peak 7 and peak 9 protein phosphorylation are similar to those of the platelet release reaction, suggesting that the phosphorylation of these proteins may play a role in the platelet release reaction. When platelet sonicates or the supernatant fraction from platelet sonicates were incubated with [gamma-32P]ATP there was phosphorylation of both peak 7 and peak 9 proteins. This phosphorylation was unaffected by either added thrombin or adenosine 3',5'-cyclic monophosphate (cAMP) despite the presence of the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine. Thus, the thrombin-dependent phosphorylation depends upon intact platelets. When the supernatant fraction from platelet sonicates was fractionated by histone-Sepharose affinity chromatography, two distinct protein kinase enzymes were resolved, one a cAMP-dependent holoenzyme and the other a cAMP-independent enzyme. The isolated cAMP-dependent enzyme fraction catalyzed the cAMP-(but not thrombin-) stimulated phosphorylation of a protein that co-electrophoresed with peak 7 protein.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 924
page 924
icon of scanned page 925
page 925
icon of scanned page 926
page 926
icon of scanned page 927
page 927
icon of scanned page 928
page 928
icon of scanned page 929
page 929
icon of scanned page 930
page 930
icon of scanned page 931
page 931
icon of scanned page 932
page 932
icon of scanned page 933
page 933
icon of scanned page 934
page 934
icon of scanned page 935
page 935
icon of scanned page 936
page 936
Version history
  • Version 1 (October 1, 1975): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts