Antibodies against the "core" glycolipid of Enterobacteriaceae (2-keto, 3-deoxyoctonate-Lipid A) have been associated with protection against the sequelae of gram-negative rod bacteremia. To investigate the nature of this protection, dogs and rabbits were immunized with purified glycolipid prepared by phenol-chloroform-petroleum ether extraction of the "Re" mutant of Salmonella minnesota 595 and opsonophagocytic and bactericidal tests were carried out using lapine peritoneal granulocytes and serum factors. Whereas 1-4 mug/kg of glycolipid i.v. produced hypotension in dogs and 8 mug/kg i.v. was lethal, a rising dosage schedule of immunization with an average total dose of 1 mg/kg produced striking protection against shock and death against challenge with heterologous organisms. 20 control dogs, given approximately 10(10) live, serum-resistant Escherichia coli 0.85:H9 or Serratia marcescens 03 during a continuous intra-arterial pressure transducer recording, showed a drop in mean systolic pressure from 186 (+/- 6 SE) to 101 (+/- 12 SE) MM Hg and a fall in mean diastolic pressure from 118 (+/- 3 SE) to 64 (+/- 8 SE) mm Hg within 60-120 min. Minor pressure changes (average less than 12% of prechallenge levels) were seen in the same number of immunized dogs. In contrast, no significant difference was noted in the bloodstream clearance of these serum-resistant organisms over a period of 4-6 h between immunized and control dogs. Intravascular clearance was greater in animals immunized with the challenged strain or in glycolipid-immunized animals challenged with highly serum-sensitive E. coli 0.14:K7. Antibody against core glycolipid protected against the hemodynamic sequelae of bacillemia, augmented intravascular clearance of serum-sensitive organisms, and abrogated the pyrogenic response to enteric bacilli, but did not enhance clearance of serum-resistant organisms. Although canine and lapine antiserum against core glycolipid passively protected mice against a heterologous challenge, opsonophagocytic and bactericidal activity was at least 100-fold less than type-specific antiserum.
L S Young, P Stevens, J Ingram
Usage data is cumulative from April 2024 through April 2025.
Usage | JCI | PMC |
---|---|---|
Text version | 121 | 0 |
45 | 19 | |
Scanned page | 408 | 4 |
Citation downloads | 48 | 0 |
Totals | 622 | 23 |
Total Views | 645 |
Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.
Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.